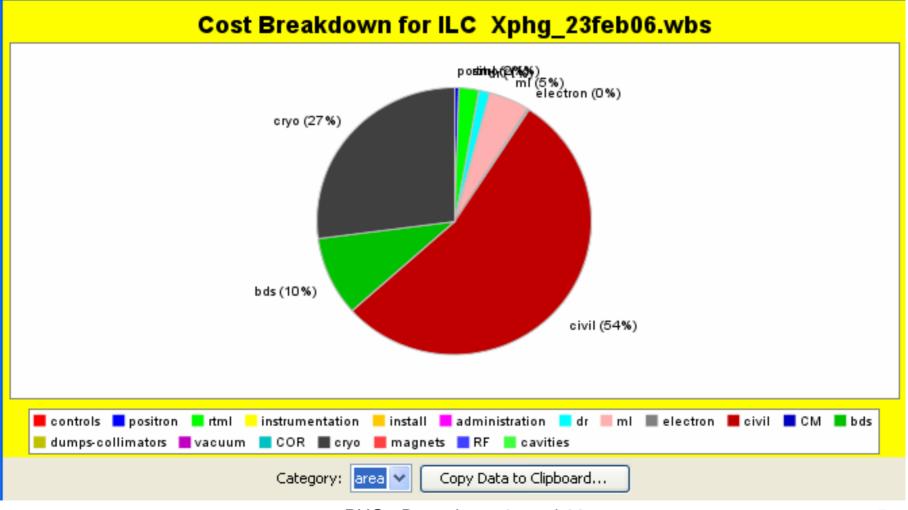
Design & Cost Board Report

Peter H. Garbincius March 9, 2006 Bangalore, India

outline of presentation

- WBS Progress (?) Defining Construction Project
- What's IN/Out of Construction Project
- Desired Level of Detail
- Preliminary Construction Schedule for estimating needed production rates
- To Update RDR "Initial Questions for AS Groups"
- Cost Estimating "Deliverables" from AS, GS, TS
- Logistics: submitting WBS related info: expanding WBS elements, Dictionary, Basis of Estimate - examples
- DCB Parallel Sessions for Friday and Saturday
- Near-term Activities DCB & Executive Committee

WBS Progress (?)


- Wiki: from dcb:dcb_home to dcb:dcb:prelim_wbs_illustrating_level
- WB_6feb06_PG_8feb06.wbs (SLAC Tool)
- **NOT** updated for Area–System-Discipline
- still System-Area-Discipline in many spots
 Wilhelm can illustrate projection of Areas using the tags

Example of Projection using Tags (dummy cost ests.)

WBS	Component Nu	mber Unit	Materials Comment
1	TLC Xphg_23feb06.wbs	1 each	369,363
1.1	🗄 😁 🍟 Electron Source	1 each	100@area=electron
1.2	🗄 🖓 Positron Source	1 each	200 @area=positron
1.3	🗄 😁 🅎 Damping Rings	1 each	400@area=dr
1.4	🗄 🖓 RTML	1 each	800@area=rtml
1.5	🖮 🕎 Main Linac	1 each	1,600@area=ml
1.6	🗄 😁 🍟 Beam Delivery System	1 each	3,200@area=bds
1.7	🔄 🕎 Commis, Op, Reliab	1 each	0 unique costs;@area=COR;@glob=COR
1.8	🗄 😁 🅎 Control System	1 each	0 unique costs;@area=controls;@glob=controls
1.9	🗄 🕎 Cryogenics	1 each	100,063 includes all cryo costs here
1.10	🖃 😙 Conventional Construction	1 each	263,000 includes all construction costs here
1.10.1		200,000 each	1 unique civil costs;@area=civil;@glob=civil
1.10.2	🖅 😙 civil for e- source	1 each	1,000@area=electron;@glob=civil
1.10.3	🖅 🕎 civil for e+ source	1 each	2,000@area=positron;@glob=civil
1.10.4	🖅 🕎 civil for DR	1 each	4,000@area=dr;@glob=civil
1.10.5	🖅 🕎 civil for RTML	1 each	8,000@area=rtml;@glob=civil
1.10.6	civil for ML Compon	ieng 1each	16,000@area=ml;@glob=civil
1.10.7	🖮 🌱 civil for BDS	1 each	32,000@area=bds;@glob=civil
1.11	🗄 😁 🍟 Installation	1 each	0 unique costs;@area=install;@glob=install
1.12	🗄 😙 Vacuum System	1 each	0unique costs;@area=vacuum;@glob=vacuum
1.13	🗄 😁 Magnet System	1 each	0 unique costs;@area=magnets;@glob=magnets
1.14	🗄 😙 Cryomodule	1 each	0 unique costs;@area=CM;@glob=CM
1.15	🗄 🖓 Cavity Package	1 each	0 unique costs;@area=cavities;@glob=cavities
1.16	🗈 😙 RF Power	1 each	0 unique costs;@area=RF;@glob=RF
1.17	Instrumentation	1 each	0 unique costs;@area=instrumentation;@glob=instrumentation
1.18	🖅 😙 Dumps & Collimators	1 each	0 unique costs;@area=dumps-collimators;@glob=dumps-collimators
1.19	🗄 🖓 Adminstration & Managemen	1 each	0 unique costs;@area=administration;@glob=admin

Example of Projection using Tags

🏶 Cost Breakdown

×

Project by Tags (dummy #'s)

global plus area specific		ILC_22feb0 area tags	6.wbs
e-		electron	1,101
e+	200	positron	2,202
DR	400	dr	4,404
rtml	800	rtml	8,808
ml	1,600	ml	17,616
bds	3,200	bds	35,232
COR	0	COR	0
controls	0	controls	0
cryo	100,063	cryo	100,000
civil	263,000	civil	200,000
install	0	install	0
vacuum	0	vacuum	0
magnets	0	magnets	0
CM	0	CM	0
cavities	0	cavities	0
RF	0	RF	0
instrumenta	0	instrumenta	0
dumps-coll	0	dumps-colli	0
admin	0	administrati	0
total	369,363		369,363

global plu	S	ILC_22feb	06.wbs 👝
area speci	ific	area tags	
e-	100	electron	1,101
e+	200	positron	2,202
DR	400	dr	4, <mark>4</mark> 04
rtml	800	rtml	8, <mark>8</mark> 08
ml	1,600	ml	17, <mark>6</mark> 16
bds	3,200	bds	35,232
COR		COR	
controls	0	controls	0
cryo	100,063	cryo	100,000
civil	263,000	Civil	200,000
install	0	install	0
vacuum	0	vacuum	0
magnets	0	magnets	0
CM	0	CM	0
cavities	0	cavities	0
RF	0	RF	0
instrument	0	instrumenta	0
dumps-coll	0	dumps-coll	0
admin	0	administrat	0
total	369,363	total	369,363

PHG - Bangalore - 9march06

Wilhelm's Notes on Cost Estimate (at top of current WBS - notes and web-link)

http://www.desy.de/~bialowon/ILCWBS/ILCWBS(Note1).pdf

contains 23 statements, definitions, assumptions, or characteristics for the

ILC Construction Project Cost Estimate and for its Work Breakdown Structure (WBS)

This is a draft, we will be refining, updating => DCB wiki

This Work Breakdown Structure (WBS) is used for the Reference Design Report (RDR) "reliable" cost estimate by the end of 2006. The center of mass energy is 500 GeV. Essential components for the 1 TeV option are included. One common estimate of the "value" and labor including site dependent cost is made. The definition of the "value" is:

- 1. Cost estimate of the construction cost but no preparation cost.
- Cost estimate on the basis of a world wide call for tender, i.e. the value of an item is the world market price if it exists. This also applies to the conventional construction and Consultancy Engineering.
- 3. The selection criterion is the best price for the best quality.
- One vender supplies the total number of deliverables. Two vendors for the same package could be chosen for risk minimization. Then the parts depend on the bids.
- If necessary parametric cost estimate is used for scaling of the cost, i.e. for cost improvement. The cost improvement is defined by the following equation:

$$P = P_1 N^a$$
,

where P is the total price of N units, P_I is the first unit price and a the slope of the curve related to learning [1]. The slope a is for large N also the ratio of the last unit price P_N and the average unit price $<\!P\!>$.

- 6. No tax is included.
- 7. No escalation is used. The fixed date is January 2, 2007.
- 8. No contingency is calculated. The risk will be analyzed and assessed separately.

9. One currency with fixed exchange rates is used. The fixed exchange rates are:

1 M€ = 1.2 M\$ = 1.4 Oku¥.

- Fixed raw material prices, i.e. for copper, steel and niobium, and fixed prices for power are used.
- 11. The value is calculated parametrically for a given construction schedule in a certain range.
- 12. The external labor is included in the value.
- 13. Internal (institute) labor will be estimated in person hours.
- 14. The EDIA¹ is included in the item cost.
- 15. Site dependent cost due to real reasons is taken into account, i.e. different geology and landscape, availability of electrical power and cooling water different cycling rate of electrical power etc.
- 16. Site depending cost due to formal reasons are not taken into account. An International treaty above national laws will equalize the differences of the different regions.

¹ In the U.S. EDIA is the acronym for Engineering, Design, Inspection and Administration. Industry calls this non-recurring engineering (NRE).

- 17. No intellectual property rights have to be considered.
- 18. The cost estimate below level 2 (1.i) will not be public.
- One common design including the footprint is used, unavoidable differences due to physical reasons are allowed.
- A common set of rules, codes and laws which fits to the regional sets if the cost impact is negligible is used.
- The use of ILC standards if necessary or the adoption after site decision with additional cost is recommended.
- Additional regional options are allowed, i.e. use of existing machines or substantial cost savings.
- Operation cost including commissioning and test with beams are calculated separately. Technical tests are included.

References

[1] Department of Defense, United States of America, Joint Industry Government Parametric Estimating Handbook, Second Edition, Spring 1999.

What is (in/out of) the ILC construction cost estimate?

- uses the spirit of ITER "Value" methodology
- Construction starts when funding authorized
- Construction ends for individual item when installed, before commissioning begins (not traditional U.S. definition)
- Does not include Research & Development
- But we need to compile estimates for R&D, commissioning, and operations (per year) for both costs and institutional labor

What is (in/out of) the ILC construction cost estimate? (2)

- Doesn't include labor costs, but estimates of institutional labor effort in person-hours
- Doesn't include contingency!
- Will need a risk assessment for costs.

WBS Level of Detail Desired

- Would like to have estimates in lowest level presented to ~ a few x 0.1% of total ILC
- Graded approach, put effort onto cost drivers
- You might need lower levels of WBS in order to produce your own cost estimate
- So far, WBS are trial-balloon examples, intend to modify to meet your needs
- Examples below are for Materials & Services (not internal labor) from USLCTOS

Level of Detail Example (1) cryogenics_WBS_28feb06.xls

	-	-	otal materials co					ption		
		•	ges for USLCTC					ainad		
								o, the items 1.8	211;	
102 (ollows USLCT and Distribution	03)				numbers on lef		
			nic Plants	1			-	I USLCTOS 50		
4.00				on n:t						
			Cryo Refrigerati						linues)	
i nis ia	_	as not in	cluded - consi		-	iyer	to increas	se sensitivity		
	1.12	_/	1.8.3.1.1.1 C	•			A			
	0.68	/	1.8.3.1.1.2 C	•						
	0.12		1.8.3.1.1.3 C	•	•		•			
	0.11		1.8.3.1.1.4 C	•						
	0.13		1.8.3.1.1.5 C	•	· ·					
	0.10		1.8.3.1.1.6 C	•			U			
	0.17		1.8.3.1.1.7 C	•						
	0.16		1.8.3.1.1.8 C	•						
	0.11		1.8.3.1.1.9 C							
	0.16		1.8.3.1.1.10				ader			
	0.09		1.8.3.1.1.11							
	0.19		1.8.3.1.1.12				n Contract	S		
	0.04		1.8.3.1.1.13			5				
	0.05		1.8.3.1.1.14							
0.05	0.04	10010	1.8.3.1.1.15		d Boxes					
0.25		1.8.3.1.2	, ,							
0.04		1.8.3.1.3			•					
0.04		1.8.3.1.4		•	iai charge)	- sno	buid this b	e operating, i	not constru	ction?
0.00		1.8.3.1.5								
0.01		1.8.3.1.6								
0.01		1.8.3.1.7								
0.17		1.8.3.1.8			luilometer)					
0.30		1.8.3.1.9		•	,			? fairly pricey!		
	1.ö.3.	z Gryogei	nic Distribution					1.1.1 - so can o	uiscaru (nis	selem

Level of Detail Example (2) RF_WBS_phg_1march06.xls

USL	CTOS - 2003 - similar to WB_			% of hardw	are	
	(not including contract installa	iton or CF&S for	r RF)	from USLC	TOS	
1.5. 8	8.1 RF System		894	15.70%		Total RF
	1.5.8.1.1 Modulator		894	6.68%		Major RF
no	1.5.8.1.2 Pulse Transformer	not here		0.00%		•
	1.5.8.1.3 Klystron		894	3.68%		ltems
	1.5.8.1.3.1 Klystron Tub	e	894	3.10%		-
	1.5.8.1.3.2 Solenoid		894	0.28%		0411
	1.5.8.1.3.3 Socket		894	0.06%		Still
	1.5.8.1.3.4 Roughing Pu	mp/Controls	894	0.08%		>> few * 0.1%
	1.5.8.1.3.5 Dry Nitrogen	Backfill System	894	0.16%		
	1.5.8.1.4 RF Power Distributi	on and Interlock	s 894	2.97%		can they be
	1.5.8.1.4.1 High Power F	hase Shifter	894	0.13%		reduced?
	1.5.8.1.4.2 High Power \$	Splitter	0	0.00%		
	1.5.8.1.4 3 Intertunnel W	aveguide	1788	0.10%		
	1.5.8.1.4.4 Waveguide to	Feed Cavity #1	0	0.00%		
	1.5.8.1.4.5 Cavity Feeds		894	2.80%		-
need	to add 1.5.8.1.4.5.1 Circula	tors	14304	0.53%		
need	to add 1.5.8.1.4.5.2 Power	Hybrid Couplers	14304	0.38%		
need	to add 1.5.8.1.4.5.3 Waveg	ude Small Section	<mark>ons</mark> 14304	0.36%		
need	to add 1.5.8.1.4.5.4 Three-	Stub Tuner	14304	0.76%		
need	to add 1.5.8.1.4.5.5 RF Be	lows	14304	0.25%		
need	to add 1.5.8.1.4.5.6 RF Sig	nal Couplers	14304	0.00%		
need	to add 1.5.8.1.4.5.7 Low Po	ower Loads	14304	0.51%		
move	2 1.5.8.1.5 Low Level RF		894	1.91%		
need	1.5.8.1.6 RF Drivers		894	0.34%		
need	1.5.8.1.7 Auxiliary Equipmen	t	894	0.13%		

Level of Detail Example (3) cryomodule_WBS_phg_7march06.xls

	•	nodule						% of hardwa	
•	1.2.1	Cryomoc		(same as a	,			from USLC	ros
		1.2.1.1	SC Cavity	Fabrication	1				
			1.2.1.1.1	Material				2.43%	-
				1.2.1.1.1.1	Niobium R	RR 300			
				1.2.1.1.1.2	Niobium R	RR 30			
				1.2.1.1.1.3	Niobium Ti	tanium			
				1.2.1.1.1.4	Cryoperm				
			1.2.1.1.2	Resonator	Production			3.57%	-
				1.2.1.1.2.1	Resonator	Machining			
				1.2.1.1.2.2	electron-be	eam weldin	g		
				1.2.1.1.2.3	Resonator	Assembly			
			1.2.1.1.3					0.80%	\blacksquare
				1.2.1.1.3.1	Tuner Mec	hanics			
				1.2.1.1.3.2	Tuner Elec	tronics			
				1.2.1.1.3.3	Piezo Tun	ər			
			1.2.1.1.4	Helium Ves	sel			1.00%	-
				1.2.4.1	Titanium V	essel			
		1.2.1.2	SC Cavity	Assembly	(above 1.2.	2)			
		1.2.1.3	Cryostat .	Assembly (t	pelow 1.6)				
		1.2.1.4	Cryostat					0.84%	-
			1.2.1.4.1						
				1.2.1.4.1.1		romagnetic	c) Steel		
			1.2.1.4.2	Vacuum Ve	essel				
		1.2.1.5	Cryostat /	Assembly				4.14%	+
		1.2.1.6	RF Powe	r Couplers				3.48%	\blacksquare
		1.2.1.7	HOM Cou	plers				0.13%	
•	1.2.2	SC Quad	drupole, Co	orrector, Inst	rumentatior	1		0.27%	
		1.2.2.1	SC Quad						
		1.2.2.2	Corrector	v					
		1.2.2.3	Beam Po	sition Monto	or				
Т							total =	16.66%	

Additional Levels of Detail Needed:

16.66% CryoModules

2.43% SC Material
3.57% Cavity Fabrication
1.00% Helium Vessel
4.14% Cryostat Assembly
3.48% RF Couplers

4.08% Cryogenics

15.70% RF Systems

- 6.68% Modulators
- 3.10% Klystrons
- 2.80% RF Distribution
- 1.90% LLRF

Σ = 35.44% USLCTOS Est.

1.12% Cryo Cold Boxes (LHC plants) 0.68% Warm Compressors (single item)

Single unit, Big Ticket Items – optimize, re-specify? Multi-component - labor intensive items – reformulate process

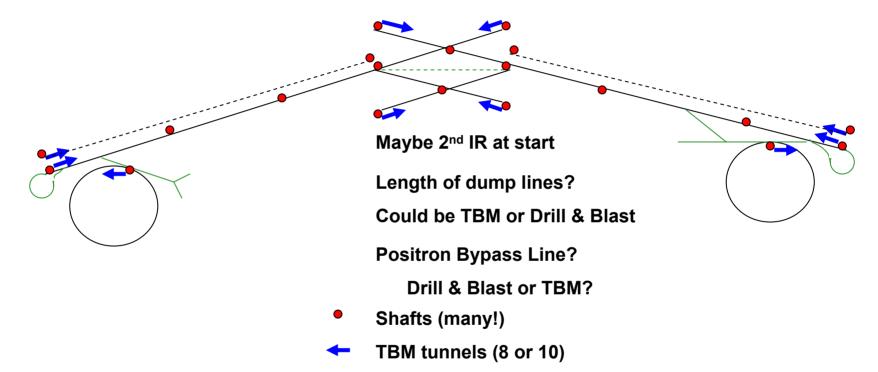
Elements of the Cost Model

Three types of costs:

site-dependent: what it would cost a region to host ILC sited in that region, 3-4 estimates commonly produced items (global capability & competition, e.g. copper/steel magnets): => world market (lowest) costs (quality) **specialty, high tech items**: cavities, klystrons, cryomodules, cryo plants, etc. => get estimates from all 3 regions for 33% and 100% of required quantities

Elements of the Cost Model (2)

- Cost Engineers & Executive Committee must determine how to select a value to be quoted for such items w/ multiple estimates
- Need estimates of most probable costs per WBS element and an indication of the anticipated probability distribution for costs.
- Median (50%), 25% and 75% points of this distribution (or 90% point for upper limit) account for non-symmetric, high cost tail


=> Risk Assignment for the cost estimate

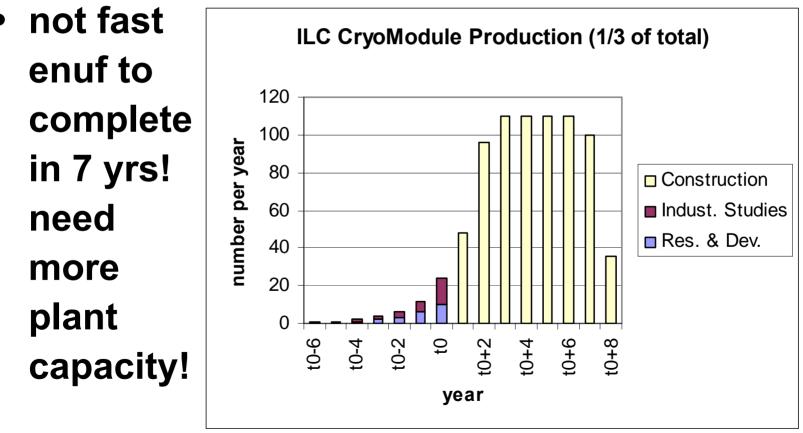
Elements of the Cost Model (3)

 Watch out for Correlated Risks: labor costs, price of materials (e.g. steel), price of electricity (for RF processing), etc.

Sketch of Civil Construction Activities

use only for sizing production capacities for components (my own view – definitely not to scale)

Outline of PHG Construction Schedule Model for generating component cost estimate


- 7 years after funding authorization => t0 through installation of all components
- need to start installation of components while civil construction continues: t0+30 months: e- SRC, e+ Keep-Alive, RTML arcs t0+33 months: DR t0+47 months.: start ML t0+65 months: last sec ML & BDS t0+78 mo.: t0+6.5 yrs.: last components delivered t0+84 mo.: t0+7 yrs.: last component installed

Start Commissioning each sub-systems as soon as its components are installed

PHG - Bangalore - 9march06

e.g. Impact on CryoModule Production

- Bob Kephart first guess at rate for 1/3 of total
- Ramp-up: R&D, Industrialization, Production

"Initial Questions for Area System Groups" (6feb06 - currently on DCB RDR wiki) needs to morph into "Recipe for Delivering Cost Estimates"

- Define what is in/out of Cost Estimate Wilhelm's list (on WBS web link)
- Step-by-step formula, instructions for what you need to do to provide information

"Cost Estimating Deliverables"

- WBS structure modifications & additions which you need to produce cost estimate at required level of detail
- WBS Dictionary (description, boundaries)
- Basis of Estimate (will give template)
- Cost Estimate per unit (with uncertainty)
- number of units required for cost table
- institutional labor est. in person hours

Logistics of WBS

- Responsibility of Area, Global, and Technical Systems Groups to provide "Cost Estimating Deliverables" to DCB (use an easy format for you: MS Word, EXCEL, text, etc.)
- Responsibility of DCB to get all that information into the WBS format.
- Here's an example of how we'll do it:

Example of WBS Format & Info

	And Nath Sail I with ANY 1385 Allan Allan All Norm
WEB_phg_test_cm.wbs - SLAC WBS	
	Web-link to .pdf file of complete WBS Dictionary and Basis of Est. or 1.1 Sources (and offspring)
WBS Component	Number Unit Materials Comment
1LC Test	1 each 26,465
1	Notes: with WBS Dictionary and Basis of Estimate for lowest level
1.1.2 🛛 🖣 🖺 electros source item #2	2 each 200
1.1.3 🛛 🚽 🚮 🔐 CM unit cost	20 each 7
1.1.4 🔚 🔐 Engineers-Scientists	6 man year 0
.1.1.5 📄 🔐 Technicians	20 man year 0
.1.2 💿 😁 📑 Positron Source	1 each 2,175
2 😥 😭 👔 Damping Rings	1 each 200@tag0=dr
3 🖶 🕎 RTML	1 each 1,450@tag0=rtml
4 👜 🕎 Main Linac	1 each 12,000@tag0=ml
5 💿 👘 Cryomodule (calculate unit cost)	0 each 12,600@tag0=cm; calculate unit cost
.6 🗄 😚 Construction (common)	1 each 10,000 @tag0=cf

🏶 WEB	_phg_test_cm.wbs - SLAC WBS			
File Edit	WBS View Help			
28	- 🖬 🖏 😂 💥 🖿 🛍 🚱 🤅	🌮 🎝 🎝 🖮	i≣ X ♥ ↑ ↓	🥑 🌑
😙 wbs	Materials 🛛 🔒 Labor Rates			
WBS	Component	Number Unit	Materials Comment	
1	😙 🖺 ILC Test	1 each	26,465	
1.1	😑 😙 🖹 🚱 Sources	1 each	2,815 @tag0=source:	5
1.1.1	🖃 🕎 📳 Electron Source	1 each	640	
1.1.1.1	- 🎝 🖺 electron source item #1	1 each	100	
1.1.1.2 1.1.1.3	1.1.1.1 Electron Sour			
1.1.1.4	Transport to last ben 🖧 Includes polarized gu			
1.1.1.5	Capture section, comb	ining doglegs,	energy and	
1.1.2	Benergy spread diagnos	tics and colli	mators	
1.2				
1.3		ndustrial quot	ation from XYZ	
1.4	Magnetics, Inc.	1 each	12,000 @tag0=ml	
1.5	🖅 🍸 Cryomodule (calculate unit cost)	0 each	12,600@tag0=cm; cal	culate unit cost
1.6	Construction (common)	1 each	10,000 @tag0=cf	

Example of WBS dictionary and Basis of Estimate (for cost-estimated items) highlighted sections are Peter's notes to authors

- 1.1 Sources: (dictionary for WBS element) provides electrons and positrons to the Damping Rings (define general boundary)
- 1.1.1 Electron Source: from polarized electron gun to electron Damping Ring injection (from ILC BCD Beamline Descriptions)
- 1.1.1.1 Electron Source Item #1: DC gun electron transport to last bend magnet of doglegs. Includes polarized gun, sub-harmonic bunchers, capture section, combining doglegs, energy and energy spread diagnostics and collimators (define more specific boundary, and say what's included in element) Basis of Estimate: industrial quotation from XYZ Magnetics, Inc.

1.1.1.2 Electron Source Item #2: EBSTR: from exit of warm pre-accelerator section to entrance of first ELTR bend magnet. Includes 3 matching sections and 4wire 2D emittance diagnostic section Basis of Estimate: QQQ-lab engineering estimate, built similar item recently

1.1.1.3 Cryomodule: standard cryomodule

Basis of Estimate: use unit cost for CM developed in item 1.5

DCB Parallel Sessions Schedule – Locations?

- Friday 11:00 12:00 meet with Executive Committee
- Friday 12:00 13:00 meet with AS, GS, TS
- Saturday 14:00 16:00 meet with AS, Gs, TS
- Detailed time schedule? 14 groups over 3 hours => 12 minutes each
- Just stop by when you have a chance to talk

DCB Parallel Sessions

With Area Sys, Global Sys, Technical Sys Leaders

Do you understand what we are asking for (what is expected)?

Have you established/negotiated boundaries of responsibility both horizontally (AS to AS)

and vertically? e.g. Installation vs. TS,

Controls vs. TS and Cryo, Instrumentation vs. TS and Cryo,

Alignment and Safety Systems (machine and personnel)

Have you produced and distributed your component list?

Have you reviewed the preliminary WBS that DCB sent a month ago?

Have you considered suggested changes or additions in this WBS to better meet your needs of producing the cost estimate and providing the level of detail desired? (few x 0.1% per item)

Can you produce the preliminary cost estimate

on the schedule of late-June?

RDR: AS, TS(0), GS(0)

		r
:rdr_as:rdr_as_home		ILC
Show pagesource Old revisions	Recent changes	Sea
ce: » ILC Wiki » rdr_home » rdr_ts_home » rdr_notes_p	procedures_and_documents » rdr_as_home	
RDR Area Systems	Table of Conte	ents 🔺
Electron Source	• RDR Area :	Systems
Schematic (February 1, 2006)	:	
Parts list (February 1, 2006)	:	
Positron Source	•	
Schematic and Parts list (February 2, 2008	5)	
Damping Ring	Lote of Cro	n ot
Damping Ring	Lots of Gre	eat
	Lots of Gre Informatior	
Ring-to-Main-Linac RTML content pages	Information	n to
Main Linac	Information	n to
Ring-to-Main-Linac RTML content pages		n to
Ring-to-Main-Linac RTML content pages Main Linac	Information	n to
Ring-to-Main-Linac RTML content pages Main Linac Main Linac content pages	Information	n to
Ring-to-Main-Linac RTML content pages Main Linac Main Linac content pages Beam Delivery System	Information	n to
Ring-to-Main-Linac RTML content pages Main Linac Main Linac content pages Beam Delivery System	Information	n to ere!

Near Term Activities for DCB

- Refine WB's Cost Estimate Definition List
- "Initial Questions for Area System Groups" needs to morph into "Recipe for Delivering Cost Estimates"
- with Executive Committee, form joint schedule and procedures for reviews and milestones