CFS Two Day Workshop at CERN/20150727

ILC Japan Cryo System

LINEAR COLLIDER COLLABORATION

Designing the world's next great particle accelerator

NAKAI Hirotaka, KEK

in collaboration with

Dimitri DELIKARIS, CERN

and Thomas PETERSON, FNAL

Basic Components of Cryogenic Systems

- Superconducting cavities installed in underground tunnel
- 2 K refrigerators required for keeping of 1.3 GHz cavities at or below 2 K
- Cooling at or below 2 K requires 4.5 K refrigerators
- Most of electric power for cryogenic systems consumed by helium compressors
- Heat removal necessary for heat generation at helium compressors as much as consumed electric power (cooling water, cooling towers)

Overall Layout for Cryogenic Systems

DKS Cryogenic Plant Arrangement (Mountainous Topography)

- Cryogenic Systems
 - Detectors (SiD, ILD)
 - Focus magnets (QD0, QF1)
 - Damping rings
 - Crab cavities
 - Main linacs (electron, positron)
- Cryogenics groups (current proposal)
 - Interaction region (IR)
 - Main linacs
- Helium compressors for IR cryogenic systems clustered in one place (Central Compressor Station)

- Scenic conservation and environment protection (noise and mechanical vibration)
- Storage of liquefied gas underground prohibited (CERN and FNAL)
- Mechanical vibration of helium compressors affect beams
- Shorter 2 K transfer lines preferred
- No liquid nitrogen employed for 4.5 K helium refrigerators
- Liquid helium storage tanks close to 4.5 K helium refrigerators
- Heat removal from helium compressors (cooling towers)
- helium delivery as gas (because of circumstance in Japan)
- Helium buffer tanks required for stable operation of cryogenic systems)
- Radioactivation of helium can be ignored (from past measurements at CERN and FNAL)
- Accessibility for daily checks and accidents response
- Construction costs

Cryogenic Component Configuration (1)

Cryogenic Component Configuration (2)

- Only cooling towers on surface for effective heat removal, and others underground
- Do noise and water vapor from cooling towers may affect environment?

Typical Access Hall (Cryogenic Cavern)

Current Cryogenic System Configuration

Current Cryogenic Component Configuration

Linac segmentation (TDR)

- Easiest "unit" is a short string
 - ▶ 9 cryomodules (2 DKS RF units) + cold box
 - ▶ Maintains standard RF waveguide configuration and linac lattice.
- Length: 116 m
- Straightforward for PM±10 and PM±12
 - ▶ Every ±116m shift changes cryo-unit length by ±1/21 ~ ±5% (~ cryo-plant load) [see example next slide]
- PM±8 special case

N. Walker, 2015

Example: moving PM-10 by 2×116m

What is the limit on cry-unit lengths from cryogenics standpoint? (Available cryo-plant power is one main limit)

N. Walker, 2015

Current Cryogenic Plant Configuration

4.5 K helium refrigerators (cold boxes)

2 K helium refrigerators (cold boxes)

Cryogenic distribution boxes

Cryogenic distribution boxes (interconnected)

Multi-channel transfer lines

Cryo units

Dimensions of Cryogenic Components

Cryogenic Plant Components (per 1 cryogenic plant)

20150716

Component	Dimensions (Width x Depth x Height)	Specifications	Place
4.5K Refrigerator	20 m x 8 m x 8.5 m	19 kW x 1	Surface
Helium Compressors	15 m x 12 m x 6 m	1500 g/s	Surface
LHe Storage Tank	ϕ 3.5 m x 13 m x 5 m** (Horizontal)	65000 L x 1	Surface
LN2 Storage Tank	φ3.5 m x 5 m x 10 m x 2 (Vertical)	50000 L x 2	Surface
Helium Buffer Tank	30 m x 16 m x 8 m (Horizontal)	250 m3 x 1, 1 MPa	Surface
	ф3 m x 15 m x 3 (Horizontal)	106 m3 x 3 = 318 m3	
Cooling Towers	40 m x 22.5 m x 10 m	10 MW/tower	Surface
Helium Purifier	5 m x 3 m x 5 m**		Surface
HP Gas Cylinders	2 m x 5 m x 3 m** (Horizontal)		Surface
Air Compressors	3 m x 2 m x 1 m x 3**		Surface
2K Refrigerator	10 m x 8 m x 4.5 m	2.3 kW x 1	Cavern
Distribution Box	8 m x 4 m x 5 m* (Horizontal)		Cavern

Dimensions cited from Delikaris (no mark), Hosoyama(*) and others(**)

Cold Box Building	25 m x 10 m x10 m	40 kW, 20 m3/h, 85 dBA
Compressor Building	15 m x 45 m x 9 m	4.5 MW, 500 m3/h 105 dBA
GHe Storage		250 m3, 2 MPa, 58 tanks
		80 m3, 2 MPa, 40 tanks
	ф3 m x 15 m*	100 m3
LHe Storage		120000 L, 0.1 MPa, 6 tanks
	φ2.5 m x 10 m*	50000 L

Dimensions cited from Claudet (no mark) and Hosoyama(*)

Cryogenic System Components

Cryogenic Components on Access Point Surface

Cryogenic Components in Cryogenic Cavern

- All cryogenic components except 2 K refrigerators and distribution boxes will be installed on surface
- Cryogenic components on surface and underground will be connected with multi-channel transfer lines
- Consideration of scenic preservation for cryogenic components on surface is necessary
- Cost can be reduced by constructing 10 identical cryogenic plants for main linacs
- Distribution boxes of two adjacent cryogenic plants may be interconnected for redundancy (but higher cost)
- Number of cryo strings for 1 cryo unit should be fixed to 21
- Total length of multi-channel transfer lines differs according to location
- Construction cost should be re-evaluated as cryogenic configuration change

- Width of access tunnel defined in TDR and that of 2 K refrigerator cold box of CERN-LHC are both 8 m
 - Impossible to install 2 K refrigerator cold boxes in cryogenic caverns through access tunnels
 - Modification of 2 K refrigerator cold box design possible?
- Cryogen storage tanks prohibited in a tunnel but cryomodules not
 - Multi-channel transfer lines are expensive and major heat loads to cryogenic systems
 - High pressure gas pipes are much less expensive and not heat loads to cryogenic systems
- Distribution boxes of two adjacent cryogenic plants may be interconnected for redundancy (but higher cost)
 - Interconnected or not?
- Total length of multi-channel transfer lines differs according to location
 - Multi-channel transfer lines longer than 1 km acceptable?

