HCAL Energy Resolution Studies

S Schätzel, HCAL Meeting, 19 Jan 2006

- GEANT3 simulation by Alexei Raspereza
- (Fluka hadronic interactions model)
- HCAL prototype geometry
- LCIO/ROOT analysis package by Roman Pöschl
- examine hadronic shower by π^+
- energy deposited in scintillator tiles
- energy resolution
- investigation of cell energy miscalibration on HCAL energy resolution
 - ⇒ Which calibration precision is needed?

Cell energy miscalibration

- energy in cell i is multiplied by a calibration constant c_i
- same constant c_i for all events and all π energies
- constants are Gaussian distributed with width σ
- nomenclature: "20% miscalibration" $\Leftrightarrow \sigma = 0.2$

Energy resolution 20 GeV π⁺

perfect calibration

20% miscalibration

ahcal.20pionp.n10k real histos.root, cell energy smearing 20%

Gauss-Fit: $\sigma/\text{mean} = 8.7(2)\%$

9.1(2)%

Energy resolution 80 GeV π⁺

perfect calibration

20% miscalibration

Gauss-Fit: σ /mean= 6.2(2)%

6.0(2)%

Energy resolution

perfect calibration

Fit:
$$\frac{\Delta E}{E} = \sqrt{\left(\frac{p0}{\sqrt{E}}\right)^2 + (p1)^2}$$

20% miscalibration

Energy Resolution

Conclusions

• 20% cell energy calibration enough

To be investigated:

- ⇒ duration of calibration runs
- ⇒ photo-electrons/MIP requirement

To come:

Fig. 9. Flowchart of Monte Carlo implementation of photodetector physics.