# Front-end electronics for the LPTPC

Leif Jönsson Phys. Dept., Lund Univ.

- Connectors
- Cables
- Alice readout electronics
- New developments
- New ideas
- Open questions

Starting point: min pad size  $1 \times 4 \text{ mm}^2$ 

Requirements: highest possible flexibility in terms of pad geometry and shape of pad panels ⇒ Small modules (i.e. small connectors)

Proposal: 32 channels modules, where each channel corresponds to an area of around 4 mm<sup>2</sup> - Japan Aviation Electronics offers a 40 pin connector with 0.5 mm pitch and the dimensions 13.9 x 4.7 mm<sup>2</sup>. Thus, this connector allows additional 8 pins for grounding.

# Example of signal routing from 1x4 mm<sup>2</sup> pads to the WR-40S connector



In case the front end card is connected via cables the arrangement may look the following way  $\Rightarrow$ 

However the front end card can also connected directly onto the pad plane



The general test concept (as presented at NIKHEF)

The intention is to build a modular electronic read-out system which offers a flexibility to test various types of avalanche read-out techniques and pad geometries.

- The read-out electronics should be dismountable from the pad board such that it can be easily moved from one panel to the next
- The amplifier board should be directly attached to the pad board via a connector
- The analogue and digital electronics should be mounted on separate cards connected by short ribbon cables
- The DAQ system should be flexible, such that it can be duplicated and distributed to different users performing table-top experiment.

Is this still valid???  $\Rightarrow$  Option to test different types of amplifiers (shaping, non-shaping....)

# DAQ architechture



#### ALICE TPC Front End Card



#### Readout & Control Backplane



#### USB to FEC Interface Card (U2F)



#### SPI Card + ALICE TPC FEC

#### Temporary during the development phase of the new preamplifier



Readout electronics for the Large Prototype TPC (LPTPC)

- modular with well defined interface for
  - ✓ various amplification technologies (GEM & µMegas)
    ✓ different module geometries
- easy to use and with a modern DAQ system
- Two strategies pursued in EUDET
  - new TDC (Rostock)
  - FADC-based (Lund, CERN)

# Status of the ALICE FEC

• 40-MHz ALTRO chip: about 125 chips have to be unsoldered from existing FECs (obsolete ALICE prototypes). This work is planned for Q1 2007.

• U2F and SPI cards: 2 additional boards of each type have been produced and tested

- New shaping amplifier chip: well advanced
  - number of channels: 32 or 64
  - programmable charge amplifier:

sensitive to a charge in the range: ~10<sup>2</sup> - ~10<sup>7</sup> electrons input capacitance: 0.1pF to 10pF

#### Programmable Charge Amplifier



#### **Production Engineering Data**

- 12- channel 4th order CSA
- various architectures (classical folded cascode, novel rail-to-rail amplifier)
- process: IBM CMOS 0.13 μm
- area: 3 mm<sup>2</sup>
- 1.5 V single supply
- Package: CQFP 144
- MPR samples (40): Apr '06

| Parameter               | Requirement | Simulation  | MPR Samples         |
|-------------------------|-------------|-------------|---------------------|
| Noise                   | < 500e      | 300e (10pF) | 270e (10pF)         |
| Conversion gain         | 10mV / fC   | 10mV / fC   | 9.5mV / fC          |
| Peaking time (standard) | 100ns       | 100ns       | 100ns               |
| Non linearity           | < 1%        | < 0.35%     | 0.4%                |
| Crosstalk               | <0.3%       | 0.4%        | < 0.3%              |
| Dynamic range           | > 2000      | 3300        | 4600                |
| Power consumption       | < 20mW      | 10mW / ch   | 10mW / ch (30pF cl) |

# Programmable Charge Amplifier



- The CQFP 144 package has the same pincount and similar pin-out as the ALICE TPC PASA
- In the near future
   the new chip will
   be tested on a
   ALICE TPC FEC



#### Next Step

- Programmable Charge Amplifier (prototype)
  - 16 channel charge amplifier + anti-aliasing filter
  - Programmable peaking time (20ns 140ns) and gain

System components and responsibilities

- ✓ interface between TPC readout plane and FEE (Lund)
- new shaping amplifer chip (CERN)
- ✓ 40-MHz ALTRO (CERN)
- ✓ Front End Card (PASA + ALTRO):
  - $\cdot$  new design (Lund)
  - production and test (Lund)
- ✓ U2F card (CERN)
- System integration and test (Lund)
- ✓ DAQ (Lund)

# The mini-FEC new design

Motivation: should be compatible with the available area such that it can be mounted directly onto the connectors at the plane  $\Rightarrow$  the number of equipped pads can be increased without getting space problems.



#### The mini-FEC new design (based on the ALTRO chip)



#### Connector arrangement



#### **Dual mini-FEC** (based on the ALTRO chip)





# Mini-FEC based on commercial components

• In telecommunication a completely new approach of handling signals has been developed (digitizing baseband + digital signal processing, DSP).

- Recent development in density and complexity of FPGA's (field programmable gate array) and lower prices.
- Completely reprogrammable DSP in contrary to ASIC.

• A new generation of multi-channel, high-speed and high resolution FADC's with low noise and serial digital output has been developed, offered to a reasonable cost.



## Pulse characteristics

• For tracks traversing the chamber parallel to the pad plane i.e perpendicular to the beam axis, the pulse length is determined by the longitudinal diffusion.

• For inclined tracks the pulse length is given by the difference in arrival time of the electrons emitted at the ends of the track segment covered by the length of a pad.



# 

**Options:** 

- Charge preamp,  $\tau_{\text{rise}}$  ~40 ns,  $\tau_{\text{decay}}$  ~2  $\mu s$  and shaper integrator 200-500 ns 10 MHz sampling
- Charge preamp,  $\tau_{rise}$  ~40 ns,  $\tau_{decay}$  2 ~µs, no shaping, 25 MHz sampling

Available: Charge preamp,  $\tau_{rise}$  20-140 ns, shaping, 40 MHz sampling

Dispute: The characteristics of the intrinsic GEM-pulse

#### **Project Milestones**

• Milestone I (Q1 2007)

- Programmable Charge Amplifier (prototype); 16 channel charge amplifier + antialiasing filter

- Milestone II (Q2 2007)
  - 10-bit multi-rate ADC (prototype); 4-channel 10-bit 40-MHz ADC. The circuit can be operated as a 4-channel 40-MHz ADC or single-channel 160-MHz ADC.
     Modified circuit board (design).
- Milestone III (Q3 2007)
  - Operating DAQ-system
  - Production and bench-top tests of modified FEC.
- Milestone IV (Q2 2008)
  - Charge Readout Chip (prototype); This circuit incorporates 32 (or 64) channels.
  - -Mini FEC (design)
- Milestone V (Q4 2008)
  - Mini FEC (prototype) production and bench-top tests.
- Milestone VI (Q2 2009)  $\Rightarrow$  Charge Readout Chip (final version)
  - Production and final tests

## Open questions

What is the rise time of a typical GEM pulse? Mahdu Dixit claims around 100 ns or more Aachen measures around 40 ns with a 3 gap GEM structure and  $Ar/CH_4 = 95/5$  %

#### Shaping?

+ the pulse shape is well-known
⇒ low sampling frequency enough
- the integration time has to include the longest possible pulse
⇒ loss in two-track resolution for shorter pulses

#### No shaping?

+ the sampling can be stopped at the end of the pulse

- $\Rightarrow$  best possible two-track resolution
- the pulse shape is unknown or has to
- be assumed to be known
- $\Rightarrow$  needs higher sampling frequency?



#### 32 / 64 Channel



The layout

