ECAL EUDET MODULE progress & perspective

EUDET annual meeting, oct, 18st, Munich

Goal of the program

- Mechanic
 - Validate a full length structure
 - Validate fastening
 - Validate thermal calculation
- Silicon sensor
 - Validate physical behaviour
 - Validate costing and production feasibility
- Electronic
 - Validate front-end ASIC
 - Ultra low comsumption
 - o System on chip
 - Daisy chaining and data outputting

EUDET module overview

- Full length structure
- 500kg radiator
- 40k channels (1.3M if fully equipped)

Mechanical R&D

On behalf of Marc Anduze & Denis Grondin LLR/LPSC

ECAL for LDC- Global presentation

- W/Si calorimeter (24 X_0 with 29 W layers)
 Weight full ECAL: $\sim 112 \text{ T} (80 \text{ barrel} + 32 \text{ End-Cap})$
- Barrel: 40 identical trapezoidal modules
- End-Cap: constituted of 12 modules (3 types)
- ECAL module: alveolar structure carbone fibers compound including half of W plates (fixed on HCAL End-Cap with rails)
- Detection elements (detector slab) in each alveolar case (Si+W), FE chips integrated, pad size: 5×5 mm²

Multi-module End-Cap

ECAL - Alveolar structure design

Linear Analysis

- Global simulations: global displacements and localization of high stress zone for different solutions (definition of dimensions)
- Local simulations: more precise simulations and study of different local parameters to design each part of theses structures

Main ISSUES:

 Dead zones : thickness of main composite sheets

- Fastening system :
 choice of fasteners
 (metal inserts, rails...)
- Thermal cooling (active or passive ?)
- Connectors ?

ECAL/HCAL - Interface

Fastening system ECAL/HCAL is fundamental for mechanical and thermal calculations (barrel and End-Caps):

- choice of fasteners: rails directly inside composite
 or metal inserts?
- Connections set path in gap between ECAL and HCAL (via a panel for cabling interface ?)
- Rails are 1 way for positioning system (gravity support) but a second complementary system may be added for fast interchange of modules... recommendation?
- Whole End-Cap (ECAL+HCAL) assembly behavior

ECAL - Detector slab

Main ISSUES:

Front End chips inside:

- ⇒ Thermal dissipation (cooling ?)
- ⇒ Chip behaviour in an electron shower (tests with a thin PCB in October 2006)
- Long structure :
- ⇒ Design and fabrication problems
 (composite with segmentation of W plates, mechanical behaviour ...)
- ⇒ Segmentation of PCB (design of an interconnection)
- Diminution of the pads size
- □ Increases of the number of channels (thermal cooling ?)
- ⇒ Size of glue dots

ECAL - Thermal analysis

Thermal sources:

Pad size	Chan/ wafers	Ch/chip	Chip/wafer	Chip size mm²	Chan/barrel	Chan/ End-cap
5*5 mm ²	144	72	2	15x15	60.4 M	21.8 M

CALICE ECAL: ~ 82.2 M of channels

Assuming that the chip power is 25 µW/channel total power to dissipate will be : 2055 W

⇒ external cooling OK

inside each slab:

necessity of cooling system but active or passive?

Ex: Pessimist simulation of heat conduction just by the

heat shield : $\lambda = 400 \text{ W/m/K (copper)}$; S = 124*0,4 mm² L = 1,55 m ; $\Phi = 50^* \Phi_{chip} = 0,18 \text{ W}$

We can estimate the temperature difference along the slab layer around 7°C and without contribution of all material from slab (PCB, tungsten, carbon fibers...)

⇒ passive cooling OK?

ECAL - Cooling technology

- Nearly all heat generated by the chips will go to slab's front-end. Then, some cooling option can be foreseen:
 - •Thermal conductors (heat shield) can be added in the slab to carry heat more efficiently along the slab direction.
 - •Thermal cooling inside: by the way of heat pipes connected to cooling fans deported; increase the thickness of slab.
- Interest: thermal conductivity of heat pipe > 1000 times copper's one.
 Heat pipes could "displace" the heat source in a busy place without energy source, without maintenance, at low cost. Heat pipe is only a means of transport for energy. (heat transfer is achieved thanks to a displacement of fluid)

EUDET Module - Presentation

Concept : to be the most representative of the final detector module :

- A alveolar composite/tungsten structure with :
 - same radiator sampling
 - 3 columns of cells to have representative cells in the middle of the structure (with thin composite sheets)
 - Identical global dimensions (1.5m long) and shape (trapezoidal)
 - fastening system ECAL/HCAL (included in the design of composite structure)
- 15 Detector slabs with FE chips integrated
 - 1 long and complete slab (L=1.5m)
 - 14 short slabs to obtain a complete tower of detection (typ. L=30 cm?) and design of compact outlet.

R&D – EUDET module (2006-2007)

- Long Type H structures :
 - Design and fabrication of the long mould (end of 2006)
 - Fabrication of validation model (1-3 samples)
- module EUDET:

- 1.5 m long ; ≈ 500 Kg
- real radiator sampling: 20 layers with 2.1 mm thick
 9 layers with 4.2 mm thick
- Design (mechanical and thermal simulations) of the module
- Optimization of composite sheets: studies of main parameters (thickness, shape ...)
- Fastening system on HCAL: design and destructive tests too
- Design and fabrication of the mould with an industrial expertise (DDL consultants)
- Transport tools
- Fabrication of the structure (end 2007)
- Mechanical support for beam test in 2008

R&D – Scope of work

Mechanical and thermal simulations:

Linear Analysis

- Global simulations :
 - weight configuration: Barrel and End-Caps static study with external load (HCAL, LumiCAL ...)
 - Nodal displacements: weakness of system mainly located on fastening points of modules hung on HCAL.
- Local simulations: more precise simulations and study of different local parameters to design correctly each part of this structure (thickness of main composite sheets, choice of fasteners ...)

Tests:

- Destructives tests to check local simulations
- Fastening systems and interface integration on composite structure
- Production specifications and moulds for long alveolar structure (Eudet)

Medium-term perspectives:

_

- New calculation performed on each of module structures
- Finite Element Model of a HCAL/ECAL to estimate the overall deflection,
- Work to be done on the fastening systems (rails, facilitated insertion of modules)
- -Thermal analysis and technology: design and test of heat pipes connection to slab
- -Other cooling fluids (air, forced convection,...) to be studied if necessary.

Silicon detector R&D

On behalf of Jean-Charles Vanel LLR

Starting point: the physic prototype

- Several producer
 - To manage production risks
 - Russia
 - Czech Republic
 - Korea
 - o Brazil
 - o India
 - Contact with Hamamatsu

Final detector : Cost driven

Parameters change

CALICE Physic prototype	EUDET
Friysic prototype	Wodule

Thickness	525μm	300µm
Pad size	1*1cm²	5*5mm²
MIP in electron	42000	24000
Pad capacitance	21pF	9.2pF
Full depletion	~150V	~75V

- Still under study : Guard ring issues, leakage current
- Many data provided by test beams to be analyzed
- ECAL physic prototype analysis crucial for good detector optimization

Electronic R&D

ILC_PHY5

In behalf of : LPC/LAL/LLR/UCL

System on Chip design

HaRD_ROC (2006)

ILC_PHY4 (2005)

Requirements for FEE

- Designed for 5*5 mm² pads
- o 72 channels (first proto 36 ch.)
- Detector AC/DC coupled
- Auto-trigger
- 2 gains / 12 bit ADC → 2000 MIP
 - Energy resolution : 4.89 GeV (cf JCB)
- 24 bits Bunch Crossing ID
- Internal SRAM with data formatting
- Output & control with daisy-chain

Requirements for ILC_PHY5 (contd)

- Power pulsing
 - Programmable stage by stage
- Calibration injection capacitance
- Embedded bandgap for references
- Embedded DAC for trig threshold
- Compatible with physic proto DAQ
 - Serial analogue output
 - External "force trigger"
- Probe bus for debug

General block scheme

One channel

One ILC_PHY5 event

→ 968 bits / chip event

Depht is 5 because of room on silicon

Time considerations

Acquisition	A/D conv.	DAQ	IDLE MODE
1ms (.5%)	.5ms (.25%)	.5ms (.25%)	199ms (99%)
1% d	uty cycle	99% duty cycle	

And for test beam ...

When spill:

Full acquisition cycle

When no spill:

IDLE MODE

Duty factor = duty factor of the spill structure

Consumption

- o The goal is 25μW/ch. (with Power Pulsing)
- The analogue part consumption :
 is 2.3mW/Ch. Without Power Pulsing
 ie 11.5µW with 99.5% Power Pulsing
- The ADC part comsumtion :
 is 3.7mW/Ch. Without Power Pulsing
 le 9.25μW/Ch. With 99.75% Power Pulsing
- Need to estimate digital part consumption
- → So far, on track

Wilkinson ADC description

- Main characteristics
 - Technology ams BiCMOS SiGe 0.35
 - Fully differential structure (MC to MD input stage)
 - 1V input dynamic range
 - 12 bits output Gray code
 - Counting frequency: 50MHz → 82µs conversion time
 - Power supply: 3.5V (analog) and 2.5V (digital)
 - Power consumption < 3mW
- Circuit (1 channel) submitted in september

Linearity error (simulation)

Ramp ADC: layout (1 channel)

ILC_PHY5 schedule

- Analogue blocks :
 - Designed
 - Simulated
 - Layouted
- Digital blocks :
 - HaRD-ROC & MAROC2 as a starting point
 - Many modifications to be done
- Wilkinson ADC: submitted (1 ch)
- Submission: November 24

Conclusion

- Work is going on
- Complexity increases quickly
- Collaboration is very efficient and fruitful. It shall achieve the outstanding expectations within the very tight schedule

HaRD_ROC (2006)

ILC_PHY5 (2006)

