ECAL EUDET MODULE Summary talk

EUDET annual meeting, oct, 20, Munich

Goal of the program

- Mechanic
 - Validate a full length structure
 - Validate fastening
 - Validate thermal calculation
- Silicon sensor
 - Validate physical behaviour
 - Validate costing and production feasibility
- Electronic
 - Validate front-end ASIC
 - Ultra low comsumption
 - o System on chip
 - Daisy chaining and data outputting

EUDET module overview

- Full length structure
- 500kg radiator
- 40k channels (1.3M if fully equipped)

Mechanical R&D

On behalf of Marc Anduze & Denis Grondin LLR/LPSC

ECAL for LDC- Global presentation

- W/Si calorimeter (24 X_0 with 29 W layers)
 Weight full ECAL: $\sim 112 \text{ T} (80 \text{ barrel} + 32 \text{ End-Cap})$
- Barrel: 40 identical trapezoidal modules
- End-Cap: constituted of 12 modules (3 types)
- ECAL module: alveolar structure carbone fibers compound including half of W plates (fixed on HCAL End-Cap with rails)
- Detection elements (detector slab) in each alveolar case (Si+W), FE chips integrated, pad size: 5×5 mm²

Multi-module End-Cap

ECAL/HCAL - Interface

Fastening system ECAL/HCAL is fundamental for mechanical and thermal calculations (barrel and End-Caps):

- choice of fasteners: rails directly inside composite
 or metal inserts?
- Connections set path in gap between ECAL and HCAL (via a panel for cabling interface ?)
- Rails are 1 way for positioning system (gravity support) but a second complementary system may be added for fast interchange of modules... recommendation?
- Whole End-Cap (ECAL+HCAL) assembly behavior

ECAL - Detector slab

Main ISSUES:

Front End chips inside:

- ⇒ Thermal dissipation (cooling ?)
- ⇒ Chip behaviour in an electron shower (tests with a thin PCB in October 2006)
- Long structure :
- ⇒ Design and fabrication problems
 (composite with segmentation of W plates, mechanical behaviour ...)
- ⇒ Segmentation of PCB (design of an interconnection)
- Diminution of the pads size
- □ Increases of the number of channels (thermal cooling ?)
- ⇒ Size of glue dots

ECAL - Thermal analysis

Thermal sources:

Pad size	Chan/ wafers	Ch/chip	Chip/wafer	Chip size mm²	Chan/barrel	Chan/ End-cap
5*5 mm ²	144	72	2	15x15	60.4 M	21.8 M

CALICE ECAL: ~ 82.2 M of channels

Assuming that the chip power is 25 µW/channel total power to dissipate will be : 2055 W

⇒ external cooling OK

inside each slab:

necessity of cooling system but active or passive?

Ex: Pessimist simulation of heat conduction just by the

heat shield : $\lambda = 400 \text{ W/m/K (copper)}$; S = 124*0,4 mm² L = 1,55 m ; $\Phi = 50^* \Phi_{chip} = 0,18 \text{ W}$

We can estimate the temperature difference along the slab layer around 7°C and without contribution of all material from slab (PCB, tungsten, carbon fibers...)

⇒ passive cooling OK ?

Conclusion R&D – EUDET module (2006-2007)

- Long Type H structures :
 - Design and fabrication of the long mould (end of 2006)
 - Fabrication of validation model (1-3 samples)
- o module EUDET:

- 1.5 m long ; ≈ 500 Kg
- real radiator sampling: 20 layers with 2.1 mm thick
 9 layers with 4.2 mm thick
- Design (mechanical and thermal simulations) of the module
- Optimization of composite sheets: studies of main parameters (thickness, shape ...)
- Fastening system on HCAL: design and destructive tests too
- Design and fabrication of the mould with an industrial expertise (DDL consultants)
- Transport tools
- Fabrication of the structure (end 2007)
- Mechanical support for beam test in 2008

Silicon detector R&D

On behalf of Jean-Charles Vanel LLR

Starting point: the physic prototype

- Several producer
 - To manage production risks
 - Russia
 - Czech Republic
 - Korea
 - o Brazil
 - o India
 - Contact with Hamamatsu

Final detector : Cost driven

Thi

300 wafers needed for EUDET module

- Still ung
- Many
- EG....

urrent

be and red

Is all for good detector optimization

Electronic R&D

ILC_PHY5

In behalf of : LPC/LAL/LLR/UCL

System on Chip design

HaRD_ROC (2006)

ILC_PHY4 (2005)

General block scheme of VFEE

One ILC_PHY5 event

→ 968 bits / chip event

Depht is 5 because of room on silicon

Time considerations

Acquisition	A/D conv.	DAQ	IDLE MODE
1ms (.5%)	.5ms (.25%)	.5ms (.25%)	199ms (99%)
1% d	uty cycle	99% duty cycle	

Consumption

- o The goal is 25μW/ch. (with Power Pulsing)
- The analogue part consumption :
 is 2.3mW/Ch. Without Power Pulsing
 ie 11.5µW with 99.5% Power Pulsing
- The ADC part comsumtion :
 is 3.7mW/Ch. Without Power Pulsing
 le 9.25μW/Ch. With 99.75% Power Pulsing
- Need to estimate digital part consumption
- → So far, on track

Conclusion on electronic R&D

- Work is going on
 - For ASIC R&D, with a crucial interaction with DAQ
 - For PCBs R&D to equip long slab
- Complexity of ASIC increases quickly
 - To simplify PCBs and achieve thickness requirement
 - Mixed design issues, system aspect of the ASIC
- Collaboration is very efficient and fruitful. It shall achieve the outstanding expectations within the very tight schedule ILC PHY5 (2006)

HaRD ROC (2006)

