

Hadron Calorimeter

Felix Sefkow

EUDET Annual Meeting October 20, 2006

Outline

- Goals, milestones, roadmap
- Detector structure: experience and R&D
- Calibration system studies

Kickoff Meeting HCAL Summary

- The goal is to propose a realistic scintillator HCAL for the ILC by the end of the decade
 - Novel concept: PFLOW imaging
 - Novel technologies: embedded SiPMs
 - Realistic = scalable + basis for costing
- The HCAL task together with FEE and DAQ will provide a framework for
 - The R&D towards a realistic detector structure
 - Connecting to the dynamic photo-sensor developments
- Feedback from the testbeam effort will be vital for the refinement of concepts in the near term conceptual phase 2006-2007

R&D collaborations

- JRA3 work is embedded in international R&D collaborations
 - Input from previous detector prototypes
 - Input from operational experience at ongoing testbeams
 - Input from generic R&D for future detector components
- Ensure that the provided infrastructure matches the R&D requirements of the community

International collaboration: 36 institutes fom Europe, Asia and America

Milestones and Deliverables

HCAL testbeam prototype

- 1 cubic metre, 8000 tiles with SiPMs
- Electronics based on CALICE ECAL design, common back-end and DAQ
- Versatile LED calibration system
- The design is not scalable to a full detector
 - Front end components not integrated
 - Electronics not optimized to SiPM signal
 - Calibration system too complicated
 - Scintillator layer thickness not minimized
 - Assembly still quite labour-consuming
- A precedence for the electro-mechanical concept of a scintillator calorimeter with integrated photo-sensors does not exist

HCAL readout architecture

Module data concentrator

> 38 layers 80000 tiles

Layer data Concentrator (control, clock and read FEE)

Scalable prototype roadmap

Milestones on the horizon ٠ 1. Mechanical concept 9/2007 2. Calibration electronics concept 9/2007 Input to mechanical concept ٠ Photo-sensor development Industry -Photo-sensor scintillator coupling started US -Electronics to photo-sensor coupling next -Electronics integration, cooling then -Electronics and DAQ architecture started -Calibration concept parallel -Ingredients to overall concept ٠ Testbeam experience started

CALICE Testbeam at CERN SPS

Felix Sefkow EUDET Annual Meeting October 20, 2006

Data taken

- First period (end July): only two days of beam availability
- Second period (end August):
 ~30 million events on disk
 - Muons, electrons, hadrons
 - 6-80 GeV
 - Smooth detector operation
- Third period: ongoing this week
 - More active layers
 - Optimized geometry
- 2007: will request continuation
 - All detector layers completed
 - Movable stage for angular scans

First lessons

- Detector is robust and stable, impressively efficient running
- Preparation in DESY testbeam was extremely valuable
- Integrated ECAL HCAL TCMT electronics approach proved successful
 - Common DAQ
 - Common online monitoring
 - Common analysis software
 - "no" detector integration effort
- SiPMs are still a pioneering technology
 - no real mass product yet
 - flexibility and adjustments necessary
- SiPM noise is just small enough, requires careful operation
- Coherent noise from FEE in first data, already eliminated

More lessons

- Redundancy proved vital ٠
 - Observe single photo-electron peaks:
 - "auto-calibration"
 - SiPM equalization, scintillator quality control, detector operation, non-linearity, stability monitoring

- Temperature variations occurred recently
 - Exercise monitoring and correction concepts
 - 1. PIN diode monitored LED reference signals
 - 2. Gain measurements
 - 3. Temperature monitoring
- Stability of saturation ٠
 - Simplify calibration system?

12

10

10

8

6

MIP

Mean

400

Entrie Mean RMS

Entrie

Mean RMS

Pixel / MIP

RMS

411

73.1

500

191 235

191 12.9 2.83

600

5 10 15 20 25 30 35 40 45 50

SiPM development

- Very active field, driven by non-HEP applications
 - Medical imaging (PET), diagnostics, night vision, radiation monitoring
- More players entering:
 - MEPHI/PULSAR, CPTA, JINR, MPI-Munich, Hamamatsu, SensL, Geneva, Trento
- Directions: higher signal lower noise -lower cost
 - Lower noise and / or inter-pixel Xtalk \rightarrow lower thresholds
 - Better spectral sensitivity to blue scintillation light
 - Larger area and / or better geometrical packing factor
- Will allow to
 - Significantly simplify the coupling between SiPM and scintillator
 - Eliminate fibre, ease precision requirements
 - Use thinner scintillator
 - Save coil cost
 - Buy containment
 - Improve electromagn. Performance
 - → maybe keep the fibre...

5x5 mm² SiPM room temperature

M.Danilov

SiPM: sensitive area 5.2x4.9 mm² Number of pixels 40x40=1600Active pixel area $100x100 \ \mu m^2$ Period $130x120 \ \mu m^2$

From MEPHI / PULSAR

SiPM scintillator coupling

Blue-sensitive SiPMs

- New devices from Hamamatsu
 - Inverted structure
- 400 pixels on 1mm², moderate crosstalk
- 2-3x more lightlield with green WLS
- 5-6 times more with blue scintillator light

- Plan test layer for testbeam

Calibration system test stand

- VME-based system
 For tests of optical calibration system electronics
 - Presently working with APD readout
 - Crate, ADCs, discriminators
 - Already used for stability tests of present testbeam equipment
- Also: complement testbeam calibration electronics

(scope, computer, NIM p/s not on EUDET bill)

J.Cvach

Progress summary

- EUDET HCAL concept and schedule largely driven by testbeam
 - Test beam started on schedule real data are rolling in
 - Operational experience rapidly accumulating
 - Engineering resources needed for completion
- Critical R&D issues around new photo-sensors identified and being addressed
- Next: invent a novel readout structure
- Calibration system infrastructure in place:
 - First milestone met