Simulations for Freiburg 3GEM+MediPix test beam set-up

- Simulation Tool
- Gas Properties
- Cluster Finding
- Resolutions...

Reminder: Simulation Tool CLUSCO

- Generates ionization clusters/electrons along tracks and drifts electrons towards GEMs/MicroMegas structures
 - HEED (I. Smirnov) for cluster generation (incl. δ-electrons, mult. scat.)
 - MAGBOLTZ (S. Biagi) for gas properties (diffusion, drift velocity)
- "Squeeze" electrons through GEM/MicroMegas holes and perform gas amplification
 - use simple geometric transformations, no detailed E-field simulation
 - exponential gas gain distribution
 - measurements from Aachen group indicate exponential distribution
 - gas gain on wires more follows Polya distribution
- Drift ALL electrons created in gas amplification to next GEM or MediPix (can be several Millions in total)
- Count electrons collected on MediPix, generate noise + apply detection thresholds (digitization step)

Freiburg triple-GEM set-up

- Nice "blobs" seen along tracks from ¹⁰⁶Ru source (β⁻ with 3.5 MeV max.)
- Cluster density for Ar/CO₂ (70:30) and a few MeV electrons (~m.i.p.)
 - expect: ~30 clusters/cm
 - reconstructed: ~6 clusters/cm (~20% eff.)

Apply simple cluster finding algorithm + check performance

- search for simply connected areas, use center-of-gravity

algorithm to resolve two (or more) overlapping clusters still missing

Test Beam Gases + Set-up

6 different combinations of gas and GEM set-up simulation

- \rightarrow Ar/CH₄/CO₂ 93/5/2 (TESLA-TDR gas)
 - GEM stack: 1 mm 1 mm 1 mm
- Ar/CO₂/CF₄ 90/5/5 (fast, aggressive?)
 - GEM stack: 1 mm 1 mm 1 mm
- Ar/CO₂ 70/30 (same as used with ¹⁰⁶Ru source in FR)
 - GEM stack: 1 mm 1 mm 1 mm
 - GEM stack: 2 mm 2 mm 1 mm
- He/CO_2 70/30 (also used with ¹⁰⁶Ru source in FR)
 - GEM stack: 1 mm 1 mm 1 mm
 - GEM stack: 2 mm 2 mm 1 mm

6 GeV electrons (with multiple scattering), 1000 tracks

- full drift range 0 6 mm (uniformly distributed)
- tracks uniformly distributed between 0.5500 0.9350 cm (pixels 100 170)

Diffusion

Ar/CO₂ and He/CO₂ have low (transverse) diffusion at both drift field and transfer field region

Expect...

0

- size of "blobs" smaller than for Ar/CH₄/CO₂ and Ar/CO₂/CF₄
 - blob size determined by diffusion in transfer region
- better resolution
 - resolution determined by diffusion in drift region

Cluster Radius

Ar/CO₂ 70/30 Ar/CH₄/CO₂ 93/5/2 y (cm) 1.4 y (cm) 1.4 sometimes large 1.2 1.2 blobs at 1 1 Ar/CH₄/CO₂ 0.8 0.8 0.6 0.6 0.4 0.4 average cluster 0.2 0.2 radius similar 0 0.2 0.4 0.6 0.8 1.2 1.4 0.2 0.4 0.6 0.8 1.2 1.4 x (cm) x (cm) - 350 – 400 µm Entries 8119 Entries 4228 225 Mean 0.3546E-01 Mean 0.3942E-01 RMS 0.1732E-01 120 RMS 0.2462E-01 200 but broader clusters with > 4 pixels, clusters with > 4 pixels, 175 100 > 6 clusters/track > 6 clusters/track distribution at 150 80 125 $Ar/CH_4/CO_2$ 60 100 75 - no real peak 40 50 20 25 0 0 cluster radius 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.02 0.04 0.06 0.08 0.1 0.12 0.14 A

EUDET Annual Meeting 2006 – 3GEM+MediPix Test Beam Simulations Michael Hauschild - CERN, 18-Oct-2006, page 7

cluster radius (cm)

cluster radius (cm)

Cluster Finding Efficiencies

Resolutions I

Get single cluster resolutions from

- unbiased residuals of straight line fit (point in question not included in fit)
- 3-cluster distributions
 - take 3 cluster positions, form difference $\Delta y = (y_1 y_3)/2 y_2$, resolution = $\sigma_{\Delta y} * \sqrt{2/3}$

EUDET Annual Meeting 2006 – 3GEM+MediPix Test Beam Simulations Michael Hauschild - CERN, 18-Oct-2006, page 9

Resolutions II

Ar/CH₄/CO₂ (93/5/2) and Ar/CO₂/CF₄ (90/5/5) worse than mixtures with more CO2 content (as expected from diffusion)
Ar/CO2 and He/CO2 similar, ~60-70 µm for 0.3 cm drift

Resolutions III

No significant differences between 2-2-1 and 1-1-1 set-up

Summary of Results

	Ar/CH ₄ /CO ₂ 93/5/2 1-1-1	Ar/CO ₂ /CF ₄ 90/5/5 1-1-1	Ar/CO ₂ 70/30 1-1-1	Ar/CO ₂ 70/30 2-2-1	He/CO ₂ 70/30 1-1-1	He/CO ₂ 70/30 2-2-1
trans. diff. at 1.33 kV/cm [µm/√cm]	521.8	457.5	196.7	196.7	145.3	145.3
trans. diff. at 4.5 kV/cm [μ m/ \sqrt{cm}]	419.3	401.6	282.0	282.0	251.0	251.0
cluster/cm (6 GeV electrons)	36.9	39.1	40.0	40.0	18.4	18.4
electrons/cm (6 GeV electrons)	91.5	96.6	91.8	91.8	29.8	29.8
cluster/cm (rec.), > 4 pixels, > 6 clust./track	5.9	5.4	6.3	5.5	6.2	5.5
cluster reconstruction efficiency [%]	15.4	14.6	16.3	14.7	35.8	32.2
average cluster radius [µm]	394	409	355	391	327	380
resolution from residuals at 3 mm drift [µm]	225	153	74	69	69	71
2-cluster resolution at 2 mm drift [um]	162	110	60	5.2	61	63

Cluster finding efficiencies

- ~15% for Ar-based mixtures
- ~35% for He-based mixtures
- But overall numbers of reconstructed clusters/cm (~5-6 cl./cm) very similar for both Ar- and He-based mixtures
 - primary cluster density of He only ~half than for Ar
- Ar/CH₄/CO₂ (93/5/2) and Ar/CO₂/CF₄ (90/5/5) mixtures have ~2x worse resolutions than Ar/CO₂ or He/CO₂
 - large diffusion in drift region and transfer region
 - large blobs

No significant differences between 2-2-1 and 1-1-1 set-up