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VALSIM

Motivation

Issues from hadronic shower simulation
Good e/pi, linearity

Not as good shower shape
- ATLAS / CMS test beam comparisons

Validate relevant aspects of the hadronic
models

Challenges

Which are the most important aspects for
shower evolution ?

How well are neutrons simulated ?
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Work items and meetings

Current work

Study the shower evolution (in simulation)
Comparing also between approaches

Identify key aspects for additional comparisons with
data (‘thin-target’)

Extend benchmarking comparisons of neutrons
(TARC)

3 day workshop July 2006 at CERN
'Geant4 Physics Verification and Validation’
Concentrated on the status of hadronic V&V
Main discussion in Geant4 Workshop, 8-15 Oct
Visitors from KEK, SLAC, INFN, ...
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Shower shape

Summary of issues
Ongoing verification
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Shower shape studies in Geant4

The goal is to understand the impact of the various
physics processes on the development of hadronic
showers, in order to improve the longitudinal (and
lateral) shower profiles.

To tackle this complex problem we use two
complementary approaches:

"microscopic” : study for instance:
- elastic scattering
- neutron production and transportation
- pion inelastic cross-sections
- multiplicity and spectra.

"macroscopic” : monitor the observables of a
simplified sampling calorimeter setup to
compare different physics simulations.

20 Oct 2006



,_.
]

Relgtive engrgy deposit
& x

<
e

0.08

0.06

0.04

0.02

Longimdinal Shower Profile QGSP 300 GeV pi- beam

| |
[ |
Contribution
= . to energy deposit
per particle type
I o =¥ along shower
& T 9
i
. i (pdgO - all ions
; (mainly: d,a))
A 4
= 2
.t
I
u E = i .
5 g 0 12 14 16 18 20

20 Oct 2006



Key aspects identified
Elastic (total) hadronic process
Energy deposit in scintilators
Inelastic (integral) cross sections
Pions (%/m* - ratio)
Neutron production and interaction

Significant for lateral shower shape, leakage
probed in TARC comparisons (next)

Leading particle carries momentum
Contribution of protons ~ 1-10 GeV
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Hadronic cross-sections

Elastic on hydrogen
Integral total/inelastic



n-H elastic scattering (M. Kosov). Blue is old GHAD
(data driven - only for < 20MeV), magenta is new
CHIPS parametrisation
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n-H elastic : do/dt (M. Kosov)
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Other elastic scattering cases already parametrized:
p-H , p-d , p-He4 , p-Be ..
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Simplified Glauber-Gribov model for
integral total and inelastic hadron-
nucleus (h-A) cross-sections:

AUtot
27T sz

A is the nucleus weight,

, inelastic: 2->1

2
GtotZZﬂ-R In| 1+

hN
Ot is the total hadron-nucleon cross-section (PDG),

R = K(A)r A3 (K(A) ~ 0.8-1.2) is the RMS radius of
gaussian single nucleon density.



N-C total/elastic cross sections
Geant4(Geisha (LHEP), Glauber-Gribov models) and FNAL data
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-Cu total/inelastic cross sections
Geant4(Dubna, Geisha, Glauber-Gribov models) and FNAL data

m-Cu cross-sections
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m-Pb total/inelastic cross sections

Geant4(Dubna, Geisha, and Glauber-Gribov models)
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Neutrons:

Comparing withTARC
measurements



TARC - neutron validation

TARC - Neutron-Driven Nuclear Transmutation
by Adiabatic Resonance Crossing

Validates spallation neutron production from 2.5 and
3.5 GeV/c protons on pure lead

Validates energy-time relationship and thermalisation
of neutrons

Absolute Neutron fluence spectrum from spallation
production

Measures capture cross-sections on a humber of
specific isotopes -

Isotopes used for CeF® activation calibration:-
"Ta, ™A, "Ag, "In, "'Mn, ®Tc. An unverified data-set for **Tc is available in GANDL. Tantalum and silver

are missing, the rest are present.

The energy is thus verified by picking up the resonance of each isotope and taking that as the neutron energy. The
resonant energies are: **Ta(4.28eV), ¥’ Au(4.906eV), *®Ag(5.19eV), *Tc(5.584eV), 1°In(9.07eV),
7Ag(16.30eV), *Tc(20.30eV) and *°>Mn(337eV).
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Experimental Set-up
TARC comprises 334 tonnes of lead ina 3.3m x 3.3m x 3m
cylindrical block

12 sample holes are located inside the volume
Primary particle beam is either 2.5 or 3.5 GeV/c protons

_Ces

| viewer-0 (OpenGLStoredXm)

| viewer-0 (OpenGLStoredXm) _GO&

Style Actions Miscellany Special
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TARC 1.5 GeV protons on lead, neutron-time cor relation
proton100_2.5gev_qgsp_bert_hp.his L
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TARC Fluence

Spectral fluence is
determined from the
energy-time
correlation with cross-
checks (lithium
activation and He3
ionisation detectors)

The simulated fluence
is still below
measurement

The Bertini cascade
gets closest to the
data

The spectral shape
looks reasonable

Yellow curve is ~
4xBERTINI
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Shower shape - summary of general issues

Investigated
Leading particle
Shower composition
n° production (ratio)
Key open issues
n° production (rate)
Cross-sections
Verification for projectiles 3 GeV/c < p <50 GeV/c
Neutron production (TARC comparisons)
Relevant for lateral shower shape
Need for better coverage in region 3 GeV < E < 20 GeV
Extending current models (QGS) ?
Slow ~ 1-10 GeV proton production
New models ?
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Additional slides



Spectrum at a surface
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n-A total cross sections

Simplified Glauber-Gribov model vs. FNAL data
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TARC - aims and setup

Aims of experiment:
neutron production by GeV protons hitting a large lead volume;

neutron transport properties, on the distance scale relevant to
industrial applications (reactor size);

efficiency of transmutation of 99Tc and 129T.

Two types of measurements performed:

neutron fluence measurements with several complementary
techniques over a broad neutron energy range from thermal up to
a few MeV;

neutron capture rate measurements on 99Tc (both differential and
integral measurements) and on 129T and 27T (integral
measurements). For 99Tc a high statistics measurement of the
a,:par'en’r capture cross-section was obtained up to ~1 keV. Below
this energy 85% of all captures occur in a typical TARC neutron
spectrum.

The set-up is 334 tonnes of E‘ur‘e lead with approximate
cylindrical symmetry about the beam axis. Diameter is 3.3m
and length 3m. Lead volume is 29.3 m3. The beam is infroduced
through a 77.2mm diameter blind hole, 1.2m long. This leads to
the neutron shower beir_ﬁ‘approxima‘rely centred in the middle
of the 3m lead length. The lead is 99.99% pure.
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Experimental Set-up

TARC comprises 334 tonnes of lead ina 3.3m x 3.3m x 3m
cylindrical block

12 sample holes are located inside the volume
Primary particle beam is either 2.5 or 3.5 GeV/c protons

| viewer-0 (OpenGLStoredXm)

Style Actions Miscellany Special

20 Oct 2006



Neutron Energy-Time Correlation

Neutron energy
and time are
stored for the
flux through a
given radial shell

Meutron energy/eV

TARC 1.5 GeV protons on lead, neutron-time correlation
protonl00_2.5gev_qgsp_bert_hp.his
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Fluence Calculation o
In the TARC analysis they use a definition of fluence

as follows:

For monoenergetic neutrons of velocity Vand density », the
neutron flux is defined as ¢ = Vi and is a gquantity that upon
multiplying by the macroscopic cross-section (2), one obtains
the neutron reaction rate per unit volume

Should not be confused with the rate of particles crossing a
surtace element, which is a ‘current ' and depends on the
orientation of the direction of the particles

Three procedures were used to determine the

fluence:

1) dN/dS ,  is the number of neutrons crossing a surface
element 35, with dS erp = dScosl where Q is the neutron

angle to the normal

2) the average fluence in a volume element dV as dl/dV, where
dl is the total track length of neutrons in dV

3) Number of interactions in a detector and computing fluence
as
(1/2)dN/dV, where dN is the number of interactions in dV

The first two were used in simulation
20 Oct 2006



,_.
I

Relative gnergy dgposit
=)

=
o

0.08

0.06

0.04

0.02

I

Longitudinal Shower Profile 300 GeV pi- beam

m e

e @

m LHEP
® QGSP
¥ 1:_[1__;."-:1 P BIC

A QGSP_BERT

L .
¥
l.._¥_

10

12

14 16 18 20
Layer

20 Oct 2006



	NA2 Status VALSIM Task
	VALSIM
	Work items and meetings
	Shower shape
	�
	�
	Key aspects identified
	Hadronic cross-sections
	�
	Simplified Glauber-Gribov model for integral total and inelastic hadron-nucleus (h-A) cross-sections:�
	N-C total/elastic cross sections�Geant4(Geisha (LHEP), Glauber-Gribov models) and FNAL data
	p-C total/inelastic cross sections�Geant4(Glauber-Gribov) vs experimental data
	π-Cu total/inelastic cross sections�Geant4(Dubna, Geisha, Glauber-Gribov models) and FNAL data
	π-Pb total/inelastic cross sections�Geant4(Dubna, Geisha, and Glauber-Gribov models)
	Neutrons:
	TARC – neutron validation
	Experimental Set-up
	Neutron Energy-Time Correlation
	TARC Fluence
	Shower shape – summary of general issues
	Additional slides�
	Spectrum at a surface
	 n-A total cross sections� Simplified Glauber-Gribov model vs. FNAL data 
	TARC – aims and setup
	Experimental Set-up
	Neutron Energy-Time Correlation
	Neutron Energy-Time Correlation
	Fluence Calculation

