

CMOS Sensors for the JRA-1 Beam Telescope

Marc Winter (IPHC/ex-IReS/Strasbourg)

on behalf of the JRA-1 team

- Reminder on CMOS sensor technology
- Plans for JRA-1 beam telescope :
 - ⇔ Demonstrator ⇒ Final set-up
- Sensors for the BT demonstrator :
 - ⇒ Status of sensor fabrication ⇒ Expected performances (based on former prototypes)
- Sensors for the final BT set-up :
 - ⇔ Status of development ⇒ Next steps
- Summary

p-type low-resistivity Si hosting n-type "charge collectors"

- signal created in epitaxial layer (low doping): Q ~ 80 e-h / μm → signal ≤ 1000 e⁻
 charge sensing through n-well/p-epi junction
 excess carriers propagate (thermally) to diode
 - with help of reflection on boundaries with p-well and substrate (high doping)
- $\Rightarrow thickness of epitaxial layer is of striking importance$ $\longrightarrow find the right fabrication process$

Specific advantages of CMOS sensors:

- \diamond Signal processing μ circuits integrated on sensor substrate (system-on-chip) \mapsto compact, flexible
- \diamond Sensitive volume (\sim epitaxial layer) is \sim 10–15 μm thick \longrightarrow thinning to \gg 100 μm permitted
- \diamond Standard, massive production, fabrication technology \longrightarrow cheap, fast turn-over
- ♦ Attractive balance between granularity, mat. budget, rad. tolerance, r.o. speed and power dissipation
- ♦ May be operated at room temperature

- BT demonstrator (Summer 2007) >>> specific application of well tested architecture :
 - \Rightarrow < 1 cm² sensors with analog output (and no integrated CDS)
 - \Rightarrow read-out frequency \sim 1 kframe/s
 - $\Rightarrow~\sim$ 2 μm resolution in BT arms
 - $\approx~$ \lesssim 1 μm resolution on DUT surface
- Final BT (\lesssim Summer 2009) ightarrow application of fast architecture under development :
 - $\Rightarrow~~\gtrsim$ 2 cm 2 sensors with digitised output (after integrated CDS)
 - \Rightarrow read-out frequency \sim 5 20 kframe/s
 - $\Rightarrow~\sim$ 2 4.5 μm resolution in BT arms
 - $\Rightarrow \ \lesssim$ 1 μm resolution on DUT surface

Real Size Sensors for the Beam Telescope Demonstrator

AMS 0.35 OPTO engineering run (submitted end of June):

Time line :

- \diamond 2 wafers back from foundry to CMP \mapsto available (diced) in Strasbourg by the end of this week
- ♦ first test results by end of 2006 : in particular fabrication yield,

2007 : assessment of chip performances, specific performances of \sim 16 μm epitaxy

Will equip EUDET telescope demonstrator (e.g. 2 arms of 3 planes)

 \longmapsto commissionning in Summer 2007 at DESY

Medium size copy of STAR final sensor prototype : (65 000 pixels instead of 205 000) * manufactured in AMS 0.35 μm OPTO techno. with \geq 11 μm and \sim 16 μm epitaxial thickness \mapsto tests foreseen at DESY, INFN, IPHC early 2007 * ionising rad. hard pixel design (validated with MIMOSA-11/-14) * 4 matrices of 64 x 256 pixels (30 μm pitch) treated in // \mapsto active area of \sim 8 x 8 mm² * 4 parallel analog outputs at 10 (or 20) MHz \mapsto frame r.o. time = 1.6 ms (or 800 μs) * integrated JTAG logic for steering

*** works at room temperature**

May equip DUT surface \rightarrow provide high resol. despite mult. scattering

 \mapsto commissionning in Summer 2007 at DESY (?)

Design close to MIMOSA-17 with smaller pitch : (260 000 pixels instead of 65 000)

* manufactured in AMS 0.35 μm OPTO techno. with \gtrsim 11 μm and \sim 16 μm epitaxial thickness \longmapsto tests foreseen at IPHC \gtrsim Nov. '06

* 4 matrices of 256 x 256 pixels (10 μm pitch) treated in // \longmapsto active area of \sim 5 x 5 mm²

* 4 parallel analog outputs at 10 (or 20) MHz

 \longmapsto frame r.o. time = 6.4 ms (or 3.2 ms)

***** works at room temperature

Established Performances of AMS-0.35 OPTO Technology

Several MIMOSA chips tested on H.E. beams (SPS, DESY) \mapsto well established performances :

• Best performing technology: AMS 0.35 μm OPTO Signal/noise in 1 pixels hsn1 Efficency vs Temperature Small Diode _%100.2₋ Entries 6067 (11–12 μm epitaxy \rightarrow "20 μm " option tests in Fall'06) 180 41.07 Mean Efficency 160 100 RMS 23.57 • N \sim 10 e $^ \mapsto$ S/N \gtrsim 20 – 30 (MPV) $\Rightarrow \epsilon_{det}$ \gtrsim 99.5 % Underflow 140[–] 202 99.8 Overflow 120 • T $_{oper.} \gtrsim$ 40 $^{\circ}$ C γ^2 / ndf 199.8 / 131 100 Constant 930.5 ± 18.14 99.6 - pitch 20 small diode chip 80 F pitch 30 small diode chip MPV 26.27 ± 0.188 • Macroscopic sensors : MIMOSA-5 (\sim 3.5 cm²; 1 Mpix) tch 40 small diode chip 60 F 99.4 6.521 ± 0.1017 Sigma ch 20 small diode chip 40 F pitch 30 small diode chip \rightarrow MIMOSA-17 = new generation for EUDET BT 99.2 itch 40 small diode chip 3 20 F 20 40 60 80 100 120 140 -10 ٥ 10 20 30

EUDET meeting

- Efficiency vs rate of fake clusters :
- vary cut on seed pixel : 6 \rightarrow 12 ADC units (\cong 4 8 N)

Signal/Noise

• vary cut on Σ of Q(crown) : 0, 3, 4, 9, 13, 17 ADC units

 $\Rightarrow \epsilon_{det} \sim$ 99.9 % for fake rate \sim 10 $^{-5}$

- \hookrightarrow track reconstruction ambiguïties \sim 0
 - data rate from electronic noise \sim 0

Temp (°C)

AMS-0.35 OPTO Perfomances : Spatial Resolution

Single point resolution versus pixel pitch:

EUDET meeting

- clusters reconstructed with eta-function,
 exploiting charge sharing between pixels
- $egin{aligned} & \clubsuit \ \sigma_{f sp} \sim {f 1.5} \ \mu {f m} \ {f (20 \ \mu m \ {f pitch})} \ & o \sigma_{f sp} \lesssim {f 2} \ \mu {f m} \ {f (30 \ \mu m \ {f pitch})} \end{aligned}$
- obtained with signal charge encoded on 12 bits

- σ_{sp} dependence on ADC granularity:
 - ⇔ minimise number of ADC bits
 - \rightarrowtail minimise dimensions, $t_{\mathit{r.o.}}$ & P_{diss}
 - ⇔ effect simulated on real MIMOSA data (20 μm pitch ; 120 GeV/c π^- beam)

 $\triangleright \triangleright \sigma_{sp} < 2 \ \mu m \ \text{(4 bits)} \rightarrowtail \text{1.7-1.6} \ \mu m \ \text{(5 bits)}$ (MIMOSA-9 : 20 \ \mu m \ pitch; T= + 20° C)

⇔ Warning : results based on simple pixel (N \leq 10 e⁻ ENC)
⇒ rad. tol. pixel integrating CDS (N \leq 15 e⁻ ENC) not yet evaluated

- Numerous studies performed with X-Rays (10 keV), $\gamma(^{60}$ Co), e⁻ (9.4 MeV), n (\sim 1 MeV)
- Sensor radiation tolerance depends on fabrication techno., pixel design, T, $t_{r.o.}$, ...
- DESY beam (e.g. 10⁴ e⁻/cm²/s) :

 ⇒ Integrated dose : ~ 3 kRad / yr
 ⇒ Fluence : ~ 10¹⁰ n_{eq} / cm² / yr

EUDET meeting

- Demonstrated radiation tolerance at room temperature :
 - ⇔ Integrated dose : \gtrsim 100 kRad 1 MRad
 ⇔ Fluence : ~ 10¹² n_{eq} / cm²
 - \Rightarrow Sensors are already adapted to long term running conditions at DESY

Sensors foreseen for the Ultimate Beam Telescope

 \Rightarrow Improvements focus on sensors equipping the arms (not DUT surface) :

Increase of read-out speed by one order of magnitude :

 \Rightarrow Demonstrator provides frame read-out time of 1.6 ms (possibly 800 μs)

 \approx Final sensors will provide frame read-out time \sim 100 μs (possibly \sim 50 μs)

• Extension of sensitive area by factor 3.5 :

 \Rightarrow Demonstrator sensitive area : 7.68 x 7.68 mm²

 \Rightarrow Final sensor sensitive area : 20.48 x 10.24 mm 2

 \rightarrow encompasses width of ILC-VD sensors

Integrate several other improvements resulting from R&D progress

(ightarrow signal amplification, data compression, etc.)

- 3 micro-circuit components developed in parallel :
 - ⇔ column // architecture with binary output
 - ⇒ ADCs to be integrated at end of each column
 - $\Rightarrow \emptyset$ micro-circuits to be integrated downstream of each ADC
- Sharing of tasks :
 - ⇔ Col. // architecture design : DAPNIA & IPHC
 - ⇔ ADC designs : LPC-Clermont, LPSC-Grenoble, DAPNIA, IPHC

 - ⇔ chips characterisation : IN2P3 (several labs), DAPNIA, DESY et al., INFN (several labs)
- 2 design options under consideration :
 - ⇔ Sensors with binary encoding of signal charge : most straightforward
 - Sensors with 4- or 5-bit ADC encoding : will provide twice better spatial resolution

EUDET meeting

High Read-Out Speed Architecture

MIMOSA-16 design features :

- Fab. via STAR engin. run (Summer '06)
- AMS-0.35 OPTO translation of MIMOSA-8 $\hookrightarrow \sim$ 11–16 μm epitaxy instead of \lesssim 7 μm
- ullet 32 // columns of 128 pixels (pitch: 25 μm)
- on-pixel CDS (repeated at end of each column)
- discriminator at end of each column
- 4 sub-arrays :
 - ***** 2 alike MIMOSA-8 (2 different pitches)
 - * 1 with ionising radiation tol. pixels
 - * 1 with enhanced in-pixel amplification (against noise of read-out chain)

24 col. with discri.

Next steps :

- back from foundry < end Oct. '06 \longmapsto lab tests \geq Nov. '06 \longmapsto beam tests \geq Summer 2007
- next generations :
 - st "large" prototype (320 columns of 256 pixels, 16 μm pitch, integrated \oslash micro-circuits) ???
 - ***** small prototypes with ADCs replacing discriminators

Several different ADC architectures under development at IN2P3 and DAPNIA

- ⇔ LPCC (Clermont) : flash 4+1.5-bit ADC → 1st proto tested, 2nd proto back from foundry
- ⇔ LPSC (Grenoble): Ampli + semi-flash (pipe-line) 5-bit ADC → 1st proto tested, 2nd proto under test
- \Rightarrow DAPNIA (Saclay) : Ampli + SAR (4- and) 5-bit ADC \mapsto 1st proto under test
- ⇔ IPHC (Strasbourg) : SAR 4-bit and Wilkinson 5-bit ADCs: 1st proto to be submitted end Oct. '06

Present outcome of development :

- st Dominant differences between architectures : \sim factor 2 in power & speed
- ***** Modest differences expected in single point resolution

Next steps :

- ⇒ Final ADC designs expected to come out in 2007
- \Rightarrow Submission of 1st col. // pixel array proto equipped with ADCs & arnothing end 2007

Prospect on Development of Final Sensors

- Geometry :
 - ⇔ 1024 columns of 512 pixels
 - \Rightarrow 20 μm pitch ($ightarrow \sigma_{sp}$ < 2.5 μm)
 - ← Sensitive area = 20.48 x 10.24 mm^2
- Functionnalities :
 - pixels with integrated CDS (possibly repeated at end of column)
 - sensor with integrated 4-/5-bit ADC
 - \triangleright ADC possibly preceded by discri. \rightarrowtail 1 ADC for 8 16 col. ?
- Read-out speed (adapted to DESY beam) :
 - \Rightarrow default $t_{r.o.}$ = 512 lines / 5 MHz \sim 100 μs
 - \Rightarrow flexible clock frequency : e.g. 1 10 MHz ightarrow $\mathbf{t_{r.o.}}\sim$ 500 50 μs

Baseline assumptions :

- \Rightarrow sensor made of 1024 col. of 512 pixels $\rightarrow \sim 5.10^5$ pixels / frame
- \Rightarrow t_{r.o.} = 100 $\mu s \rightarrow$ 10 kfps (can be twice more or twice less)
- $\Rightarrow \leq$ 5 hits / frame
- ⇔ noisy pixel rate > threshold \leq 10⁻⁴ →
- pixel data size = 2 Bytes
 ■

(10 bits of address & 5 bits for charge)

- Data rate from pixel noise :
 - \Rightarrow 50 pixels / frame \rightarrow 1 MB/s
- Data rate from beam particle hits :
 - \Rightarrow 5 hits of 9 pixels / frame \rightarrow 1 MB/s

Mimosa 9. Efficiency VS Fake

100

Fake rate per pixel

 \Rightarrow Total < 1 kB/frame \rightarrow few MB/s only

- Geometry :
 - ⇔ 1280 columns of 640 pixels
 - \Rightarrow 16 μm pitch ($ightarrow \sigma_{sp} <$ 5 μm)
 - \Rightarrow Sensitive area = 20.48 x 10.24 mm²
- Functionnalities :
 - pixels with integrated CDS (possibly repeated at end of column)
 - ⇔ column ended with integrated discriminator → binary encoding of charge
- Read-out speed (adapted to DESY beams):
 - \Leftrightarrow default $t_{r.o.}$ = 640 lines / 6.4 MHz = 100 μs
 - \Rightarrow flexible clock frequency : e.g. 1 10 MHz \mapsto $t_{r.o.}$ = 640 64 μs

- Sensor production based on 5 steps (perhaps only 4, i.e. SP3 included in LP):
 - ⇔ MIMOSA-8 \equiv SP-1 : 25 μm pitch, epi < 7 μm
 - \Rightarrow MIMOSA-16 \equiv SP-2 : 25 μm pitch, epi \sim 11 or 16 μm , rad. tol.
 - \Rightarrow M16+ \equiv SP-3 : like SP-2 but integ. \emptyset , 20 μm pitch (ADC) or 16 μm pitch (binary)
 - ⇔ M16++ \equiv LP : like SP-3 but 320 col. of 256 pixels
 - \Rightarrow M16+++ \equiv FS : like LP but 1024 x 512 pixels (ADC) or 1280 x 640 pixels (binary)

Summary

Sensors for BT demonstrator fabricated \rightarrow based on already assessed architecture :

- \Rightarrow Arms : 8 x 8 mm 2 30 μm pitch \sim 1 kfps
- \Rightarrow DUT surface : 5 x 5 mm $^2\,$ 10 μm pitch \sim 200 fps
- ⇔ Analog outputs
 - \rightarrowtail Characterisation will start in Nov.-Dec. '06

 \rightarrow Available for mounting early Spring '07

Development of final sensors for BT arm in progress \rightarrow O(10) faster and 3.5 times larger :

- \Rightarrow Arms : 20 x 10 mm 2 \sim 15 20 μm pitch \sim 10 kfps
- Sparsified and digitised signals
- ⇒ Column // architecture with integrated CDS and discriminator validated
- \Rightarrow Compact & fast ADCs under devt \rightarrow expected to converge in 2007
- \Rightarrow Ø micro-circuits expected to converge by Summer '08

 \rightarrow Final sensors available by 2009

Development of sensors will continue to benefit from synergy with other applications