The large prototype TPC A status report

Leif Jönsson Phys. Dept. Lund Univ.

Goal: Develop a prototype TPC with all necessesary infrastructure to study the required performance of a full scale TPC for experiments at the ILC

- The field cage
- The end plate
- The infrastructure read-out electronics
- The TDC read-out

The field cage

The size of the field cage is given by the dimensions of the magnet and the homogeneity of the magnetic field

Radius: 40 cm (gives room for Si detectors between the coil and the TPC)

Length: 60 cm (the length over which the magnetic field strength vary by \approx 1%)

Wall: composite material HV insulation: kapton layers

Exchangable end-plate to test different gas amplification systems, cooling techniques, pad structures, mechanical stability, gas supply, gas tightness, HV distribution etc.

Construction of the field cage in close collaboration with industry

The TPC field cage construction plans

Field maps

- Width of field strips: 2.3 mm
- Pitch: 2.8 mm

Reduces the field inhomogeneities compared to 1.6 mm wide strips and 2.8 mm pitch (like in the present TPC prototype at DESY)

Field maps

- Mirror strips at intermediate potentials
- Kapton foil of 100 μm

Very small field variations

Future plans

- Beginning of 2007: construction of the field cage
- Calculations to optimize the mechanical structure
- Final design of field strips
 - Ongoing negotiations with industry concerning foils for the strips
 - Test samples of foils for electrical tests ordered

End-plate

Panels

End-plate design

HV supply

Example of signal routing from 1x4 mm² pads to the WR-405 connector

- Smalles foreseeable pad size 1x4 mm²
- The connector should match this size
- Highest possible flexibility in pad geometry ⇒ small modules
- Japan Aviation Electronics offers a 40 pin connector with 0.5 mm pitch and dimensions 13.9x4.7 mm²
- 32 pins for signals and 8 pins for grounding

In case the front end card is connected via cables the arrangement may look the following way \Rightarrow

However the front end card can also connected directly onto the pad plane

The general test concept (as presented at NIKHEF)

The intention is to build a modular electronic read-out system which offers a flexibility to test various types of avalanche read-out techniques and pad geometries.

- The read-out electronics should be dismountable from the pad board such that it can be easily moved from one panel to the next
- The amplifier board should be directly attached to the pad board via a connector
- The analogue and digital electronics should be mounted on separate cards connected by short ribbon cables
- The DAQ system should be flexible, such that it can be duplicated and distributed to different users performing table-top experiment.

Is this still valid??? \Rightarrow Option to test different types of amplifiers (shaping, non-shaping....)

DAQ architechture

ALICE TPC Front End Card

Readout & Control Backplane

USB to FEC Interface Card (U2F)

The U2F Card can read up to 16 FECs (2048 channels)

SPI Card + ALICE TPC FEC

Temporary during the development phase of the new preamplifier

Status of the ALICE FEC

- 40-MHz ALTRO chip: about 125 chips have to be unsoldered from existing FECs (obsolete ALICE prototypes). This work is planned for Q1 2007.
- U2F and SPI cards: 2 additional boards of each type have been produced and tested
- New shaping amplifier chip: well advanced
 - number of channels: 32 or 64
 - programmable charge amplifier:

sensitive to a charge in the range: $\sim 10^2$ - $\sim 10^7$ electrons

input capacitance: 0.1pF to 10pF

Programmable Charge Amplifier

Production Engineering Data

- 12- channel 4th order CSA
- various architectures (classical folded cascode, novel rail-to-rail amplifier)
- process: IBM CMOS 0.13 μm
- area: 3 mm²
- 1.5 V single supply
- Package: CQFP 144
- MPR samples (40): Apr '06

Parameter	Requirement	Simulation	MPR Samples
Noise	< 500e	300e (10pF)	270e (10pF)
Conversion gain	10mV / fC	10mV / fC	9.5mV / fC
Peaking time (standard)	100ns	100ns	100ns
Non linearity	< 1%	< 0.35%	0.4%
Crosstalk	<0.3%	0.4%	< 0.3%
Dynamic range	> 2000	3300	4600
Power consumption	< 20mW	10mW / ch	10mW / ch (30pF cl)

Programmable Charge Amplifier

 The CQFP 144 package has the same pincount and similar pin-out as the ALICE TPC PASA

In the near future
the new chip will
be tested on a
ALICE TPC FEC

Next Step

- Programmable Charge Amplifier (prototype)
 - 16 channel charge amplifier + anti-aliasing filter
 - Programmable peaking time (20ns 140ns) and gain

System components and responsibilities

- ✓ interface between TPC readout plane and FEE (Lund)
- ✓ new shaping amplifer chip (CERN)
- ✓ 40-MHz ALTRO (CERN)
- ✓ Front End Card (PASA + ALTRO):
 - · new design (Lund)
 - production and test (Lund)
- ✓ U2F card (CERN)
- ✓ System integration and test (Lund)
- ✓ DAQ (Lund)

Pulse characteristics

• For tracks traversing the chamber parallel to the pad plane i.e perpendicular to the beam axis, the pulse length is determined by the longitudinal diffusion.

- For inclined tracks the pulse length is given by the difference in arrival time of the electrons emitted at the ends of the track segment covered by the length of a pad.
- ⇒ Pulses will be of different length

Options:

 \bullet Charge preamp, τ_{rise} ~40 ns, τ_{decay} ~2 μs and shaper integrator 200-500 ns 10 MHz sampling

pad plane

track

• Charge preamp, τ_{rise} ~40 ns, τ_{decay} 2 ~µs, no shaping, 25 MHz sampling

Available: Charge preamp, τ_{rise} 20-140 ns, shaping, 40 MHz sampling

On discussion: The characteristics of the intrinsic GEM-pulse

Project Milestones

- Milestone I (Q1 2007)
 - Programmable Charge Amplifier (prototype); 16 channel charge amplifier + antialiasing filter
- Milestone II (Q2 2007)
 - 10-bit multi-rate ADC (prototype); 4-channel 10-bit 40-MHz ADC. The circuit can be operated as a 4-channel 40-MHz ADC or single-channel 160-MHz ADC.
 - Modified circuit board (design).
- Milestone III (Q3 2007)
 - Operating DAQ-system
 - Production and bench-top tests of modified FEC.
- Milestone IV (Q2 2008)
 - Charge Readout Chip (prototype); This circuit incorporates 32 (or 64) channels.
 - -Mini FEC (design)
- Milestone V (Q4 2008)
 - Mini FEC (prototype) production and bench-top tests.
- Milestone VI (Q2 2009) ⇒ Charge Readout Chip (final version)
 - Production and final tests

Read-out using time-to digital converter

Principle:

Drift time measured by time-to-digital conversion

Charge measured by charge-to-time conversion

The principle of the Amplifier Shaper Discriminator Q (charge)

Proof-of-principle experiments with GEM TPC at DESY

16 channel ASDQ board: preamplifier and charge-to-time converter

First test: 128 channels

<u>EUDET (JRA2):</u> 1000+ channel TDC-based compact readout electronics will be assembled.

Measurments with laser induced tracks.

Calculated residuals for all hits.
Resolution in Z: RMS ~0.4 mm (@ Z=30cm)

A.Kaukher, "A study of readout electronics based on TDC for the international linear collider TPC detector", IEEE Trans. Nucl. Sci. 53 (2006) 749.

Readout electronics for the LP TPC

The readout electronics is (still) based on existing components:

- Four 8-channel ASDQ ASIC (UPenn/FNAL)
- 32-channel general puprose TDC (CERN)

Small footprint of the board allows TPC pads as small as 1x4 mm².

Power consumption ~2 W/card!

An "evaluation board" is being designed to investigate performance criteria to the *analogue* component – ASDQ, and the digital component – TDC, of the board.

Next step: Front End Card (size :~30*100 mm²)

32 channel Front End Card(FEC): 4 ASDQ and HPTDC

A simple triple GEM detector is being prepared for standalone tests of the readout electronics.

Next step: LP TPC

Read-out using time-to digital converter

Principle:

Drift time measured by time-to-digital conversion

Charge measured by charge-to-time conversion

Amplifier-Shaper-Discriminator-Q (charge) CDF-experiment

Front-End electronics developed at DESY for tests with TPC

TDC-based readout electronics for a GEM TPC

- The time of arrival is derived using the leading edge discriminator.
- The charge of the input signal is encoded into the width of output digital pulse.

The mini-FEC new design

Motivation: should be compatible with the available area such that it can be mounted directly onto the connectors at the plane

 \Rightarrow the number of equipped pads can be increased without getting space problems.

The mini-FEC new design

(based on the ALTRO chip)

Connector arrangement

Dual mini-FEC

(based on the ALTRO chip)

Mini-FEC based on commercial components

- In telecommunication a completely new approach of handling signals has been developed (digitizing baseband + digital signal processing, DSP).
- Recent development in density and complexity of FPGA's (field programmable gate array) and lower prices.
- Completely reprogrammable DSP in contrary to ASIC.
- A new generation of multi-channel, high-speed and high resolution FADC's with low noise and serial digital output has been developed, offered to a reasonable cost.

Open questions

What is the rise time of a typical GEM pulse? Mahdu Dixit claims around 100 ns or more Aachen measures around 40 ns with a 3 gap GEM structure and $Ar/CH_4 = 95/5 \%$

Shaping?

- + the pulse shape is well-known
- ⇒ low sampling frequency enough
- the integration time has to include the longest possible pulse
- \Rightarrow loss in two-track resolution for shorter pulses

No shaping?

- + the sampling can be stopped at the end of the pulse
- ⇒ best possible two-track resolution
- the pulse shape is unknown or has to be assumed to be known
- \Rightarrow needs higher sampling frequency?

32 / 64 Channel

The layout

Starting point: min pad size $1 \times 4 \text{ mm}^2$

Requirements: highest possible flexibility in terms of pad geometry and shape of pad panels

⇒ Small modules (i.e. small connectors)

Proposal: 32 channels modules, where each channel corresponds to an area of around 4 mm²

- Japan Aviation Electronics offers a 40 pin connector with 0.5 mm pitch and the dimensions $11.5 \times 5 \text{ mm}^2$. Thus, this connector allows additional 8 pins for grounding.

Readout electronics for the Large Prototype TPC (LPTPC)

- modular with well defined interface for
 - ✓ various amplification technologies (GEM & µMegas)
 - ✓ different module geometries
- easy to use and with a modern DAQ system
- Two strategies pursued in EUDET
 - new TDC (Rostock)
 - FADC-based (Lund, CERN)

New development The programmable preamplifier

- ✓ number of channels: 32 or 64
- ✓ programmable charge amplifier:
 - sensitive to a charge in the range: $\sim 10^2$ $\sim 10^7$ electrons
 - input capacitance: 0.1pF to 10pF

Magnetic field around TPC region

Max. |Br| < 0.005 T (0.4 %) for TPC drift region (40 cm)

HV-distribution

The prototype

Field maps

No mirror strips

Mirror strips at intermediate potential

- Large field distortions (>5% at cathode
- Inhomogeneous field in drift region (O 1.5%)

- Small field variations (<0.5%)
- Some residue deviations at anode (O 1%) (needs optimization of interface end-plate drift volume)

Layout of the field strips

- SMD-Resistor chain to devide the potential will be inside the chamber
- Connection through the foil by vias
- $\circ~2.8\,\mathrm{mm}$ -Pitch

HV-distribution

Charge-to-time conversion in BELLE

