

DESY Summary

Ingrid-Maria Gregor, Julia Fourletova, <u>Tobias Haas</u>, Katsumasa Ikematsu, Tatsiana Klimkovich, Ulrich Koetz, Lukasz Maczewski, Alessandro Montanari, Carsten Muhl, Jolanta Sztuk

- > Testbeam Infrastructure and Magnet
- Telescope Simulations
- Measurements with Mimostar2

EUDET Annual Meeting 18 October 2006

Preparation of Test BeamArea 24/1 for PCMAG(

Entrance of Test Beam Area 24/1

•The test beam area is rearranged and renovated by MEA (Norbert Meyners).

- A concrete block is placed in the area as base for the PCMAG.
- Two holes with Ø 100mm are drilled in the floor, to access the cable trays in the cave, which connected the test beam area 24/1 with the control hut.
- The helium return line is installed.

C. Muhl DESY/F1

PCMAG

- All administrative issues about the transfer to DESY are clarified.
- Magnet arrives @ DESY in November
- Commissioning to take place @ DESY in November

DUT Positioner

- Decision for PI-offer as best choice for price-performance ratio, with respect to our needs.
- Expected preciseness in the order of a few microns.
- Stage ordered already complete assembled and surveyed with steering components and software
- Delivered to DESY in October 2006, but had to be sent back since it came unassembled and uncalibrated.
- Will be set up in the lab for testing in November
- Ready for integration in spring 2007

Senor Boxes are Under Development

Pictures show a first design iteration. Cooling and fixations will change!

Carsten Muhl

Regulated Cold N2 Gas System

The TG-LKF 63/50 KALTGAS system includes a standard safety control unit (a temperature controller with current value/set point display and a safety controller), a KF-NW 50 siphon with an LN2 vaporizer (Jet), a flexible, evacuable N₂ gas line with an integrated post-heating module (heater), a PT100 temperature sensor and a vacuum pump with accessories.

Cold Gas System: +170°C ...-180°C

(N2-Stream Temperature Accuracy ±0,1°C)

- -Expensive
- -Safety regulations required
- +Quick
- +Precise
- +Wide range of temperature
- +DUT cooling possible with the same device

Evaporation Cooling Based on R404A

	R404A/R507											
	Kälteleistung in W					Verdampfungstemperatur in °C						
Liquefier 1	-45	-40	-35	-30	-25	-20	-15	-10	-5	0	5	10
Liquefier 2	64	85	110	141	177	218	265	318	378	-	-	-
	_	-	_	_	_	_	265	314	377	450	528	588

- -Large area for evaporator needed → Increases Size of sensor box
- -2 systems needed between -40°C and +10°C
- -Slow and complex regulation
- +No danger
- ±Standard Components except evaporator

Simulations of EUDET Telescope

ILC Software Tools

- Full simulation: Mokka (based on Geant 4) and MySQL database
- Straight line track fit
- Output: LCIO format files
- Stored information: hit position, deposited energy, ...

- Analysis: Marlin and Root
- Simulated 50000 events
- Assumed telescope plane intrinsic resolution – 3 um (hit positions are smeared)

Tatsiana Klimkovich

Symmetric geometry

Asymmetric geometry

Validation of Multiple Scattering Model

For small scattering angle Gaussian approximation is used for the width of the projected angular distribution:

$$\theta_0 = \frac{13.6 MeV}{\beta cp} z \sqrt{\frac{x}{X_0}} \left[1 + 0.038 \ln(\frac{x}{X_0}) \right]$$

- Simulate silicon wafer of 300 um thickness
- Shoot 1 GeV electrons (100000 events)
- Look at the projection of scattering angles
- ➤ Theory prediction: 0.602 mrad

Tatsiana Klimkovich

Results

Comparison of new simulation (Mokka) with Prague simulation (Geant 4) for 6 plane symmetric geometry

Comparison of different geometries (Mokka simulation, after cuts on chi2 and track slope):

Note: Straight line track fits!

HiRes Effect

- Standard: all planes have 3 µm resolution
- HiRes: 2 planes closest to DUT have 1.5 μm resolution
- \rightarrow Achieve: 1.5 (2) µm on DUT at 6 (3) GeV/c

Tatsiana Klimkovich

- When detector is ready a proper software alignment will be an important issue for telescope precision
- Test alignment procedures with simulated data
- Alignment package Millepede is developed by Volker Blobel (Uni Hamburg)
- Used in H1, ZEUS, CMS for tracker alignment
- Aligns all planes simultaneously
- · Based on linear least squares fits
- Simulated 50000 events (6 GeV electron beam) for 6-plane symmetric telescope configuration without DUT

First try to find alignment parameters

Should investigate more, play with constraints, etc.

Tatsiana Klimkovich

Summary

- > Testbeam area ready for the magnet and telescope
- Magnet will arrive at DESY in November
- > XY\phi table for telescope delivered in October but went back for calibration
- Mechanical setup and cooling for telescope under development
- Simulation tool (Mokka) ready and validated: First results available.
- Measurements with Mimostar2 were done in the lab