

Hadron Calorimeter

Felix Sefkow

EUDET Extended Steering Meeting September 11, 2006

JRA 3: Calorimetry

- Activity organized in 5 tasks:
- Electromagnetic Si W calorimeter
 - Scalable prototype, Si sensors and electronics integration
 - Ecole polytechnique and Prague
- Hadron calorimeter
 - Scalable structure, calibration system and electronics integration
 - DESY, Prague and Hamburg + associates: Russian groups + Bergen U.
- Very forward calorimeter
 - Laser positioning systems, sensor characterization, electronics
 - DESY, Cracow, Prague and Tel Aviv + associated
- Front end electronics
 - ASICS and integration for different calo types
 - LAL, Ecole polytechnique and DESY
- Data acquisition
 - Scalable system, for prototype and as basis for common detector DAQ
 - University College London and associated UK groups

Kickoff Summary

- Calorimeter for ILC
- The goal is to propose a realistic HCAL for the ILC by the end of the decade
 - Novel concept: PFLOW imaging
 - Novel technologies: embedded SiPMs
 - Realistic = scalable + basis for costing

- The HCAL task together with FEE and DAQ will provide a framework for
 - The R&D towards a realistic detector structure
 - Connecting to the dynamic photo-sensor developments
- Feedback from the testbeam effort will be vital for the refinement of concepts in the near term conceptual phase 2006-2007

Milestones and Deliverables

Calibration system test stand

- VME-based system For tests of optical calibration system electronics
 - Presently working with APD readout
 - Crate, ADCs, discriminators
 - Already used for tests of present testbeam equipment
- Also: complement testbeam calibration electronics

(scope, computer, NIM p/s not on EUDET bill)

Concepts roadmap

- Milestones on the horizon
 - Mechanical concept
 Calibration electronics concept
- Ingredients to mechanical concept
 - Photo-sensor development
 - Photo-sensor scintillator coupling
 - Electronics to photo-sensor coupling
 - Electronics integration
 - Calibration concept
- Ingredients to calibration concept
 - Photo-sensor development + coupling
 - Testbeam experience

Industry us, and associates next then parallel	
started started	

9/2007

9/2007

Blue-sensitive SiPMs

- New devices from Hamamatsu
- 400 pixels on 1mm², moderate crosstalk
- 2-3x more lightlield with green WLS
- ~ 6 times more with blue scintillator light
- Simplified coupling
 - Plan test layer for testbeam
- Or: Thinner scintillators
 - Save detector volume and cost
 - ECAL applications

Testbeam at CERN SPS

Felix Sefkow EUDET SC September 11, 2006

HCAL

Hadron data taken

• August 25-30: ECAL + HCAL

E (GeV)	Raw secondary (for beam studies)	Electron filtered (~95% pure pions)
80	~50 k	300 k + collimator tuning
60	~50 k	500 k
50	~50 k	350 k
40	~50 k	450 k
30	~50 k	380 k

- September 1-4: HCAL alone
 - Low energy data (6, 10, 20 GeV)
 - High energy 30...80 GeV: about 500k e, 1M pi at each point
- More than 10 million events, with and mostly without ECAL

Hadron events

Felix Sefkow EUDET SC September 11, 2006

Analysis started

- Hadron and electron shower profiles
 - Electron data allow detailed verification of detector understanding and calibration accuracy
- Detector response studies for ٠ varied operating conditions
 - Modify bias as substitute for temperature variations
 - Some coherent noise observed, under study
 - Needs some engineering resources

0.01

36639

906

431

11

HCAL outlook

- Layer production:
 - Module 20 done
 - Module 21-22 in prduction
 - Module 23-24: tiles received
- \rightarrow expect 2/3 of detector for October run
- October 12-24 ECAL + HCAL + TCMT
 - Combined particle flow reconstruction
- Movable stage:
 - Delayed (base plate manufacturing, assembly)
 - Will not be available for October run
 - Blocks engineering resources for mechanical concept

Progress summary

- R&D around new photo-sensors underway
 - R&D roadmap to be laid out
- Real test beam data are starting to roll in
- Detector analysis started
- EUDET concept and schedule largely driven by testbeam
 - Operational experience
 - Engineering resources
 - → schedule risk

Financial information

- Consumables:
 - Only IOPACSR
 - Allocated: 12k, Spent:15.5k
- Staff:
 - DESY
 - Allocated 31k, Spent: 0, expect 8k
 - IOPASCR
 - Alllocated 6k, Spent: 0, expect to start in 2007
- Travel:
 - Monitored by institute; to be sub-discriminated by task?