

Construction schedule for CFS

Agenda:

- →Scope of CFS scheduling exercise
- →Method to make time estimates
- \rightarrow Year by year schedule
- →Conclusion

- \rightarrow Valid for Europe (both sample sites) and Americas
- \rightarrow Based on input from:
 - → Amberg Engineering Ltd for Civil engineering work
 - → LHC project for tunnel construction & CFS services installation
 - → CMS project for surface buildings and detector hall construction and CFS services installation

19/07/2006

→ Use the completion examination of LHC and CMS work and scale it to ILC project

→ Based on a real life similar project

Schedule of underground Civil Engineering work

→ RTML + Main Linac + BDS + DRs schedule for

- \rightarrow CERN and Americas
- → DESY
- \rightarrow Day 1 is the kick off date of the ILC project
 - \rightarrow Detailed design and tender documents completed
- → Compatible with a 7-year project construction time
- → Shaft and caverns excavation includes the primary lining of the shaft base caverns and the final lining of the shaft. The finishing of the caverns only take place once no spoil is taken out from the shaft anymore.
- → DR schedule displayed independently

→ Market surveys, call for tenders and contractor selection

- → Building permits, Environmental impact studies, Purchase of land
- \rightarrow Based on experience with LHC Implies having a frozen design!

\rightarrow Shafts excavation

11 shafts have to be started together

→Surface buildings → Service buildings

 \rightarrow Part of surface detector building (CMS)

19/07/2006

martin.gastal@cern.ch

To be build when

CMS concept

→ "When civil engineering work is so long that beneficial occupancy of the experimental cavern could be late, CMS has introduced from the onset the concept of constructing and testing the detector on the surface before transfer underground by heavy lifting means. This concept has proved quite successful"

A Herve - CMS technical coordinator

- \rightarrow Key facts:
 - → Work executed underground requires 50% more time than if performed on the surface and can be at least 30% more expensive
 - \rightarrow Extra costs attached to the CMS concept:
 - \rightarrow Heavy lifting equipment (1.2MCHF for CMS)
 - \rightarrow Large detector assembly building (3 MCHF for CMS)
 - \rightarrow Both costs are already included in the CFS cost estimates for EU sites

- \rightarrow Set-up and launch of TBMs both for RTML, ML, BDS and DRs
- → Completion of shafts excavation
- → Detector halls construction

9 TBMs have to be started together +2 for DRs

19/07/2006

9 TBMs Different Ø to accommodate design

Detector hall construction starts when shafts are complete

12

→ Most resource intensive year:

- \rightarrow 10 TBMs in action for RTML, ML, BDS + 2 for DRs
- \rightarrow Completion of detector halls + on-going work for shaft base caverns
- \rightarrow Finishing of tunnels + start of CFS services installation

- \rightarrow Last year of underground CE work:
 - \rightarrow Extraction of TBMs
 - \rightarrow Start of installation for infrastructure in Detectors Halls
 - \rightarrow Completion of shaft base caverns
 - \rightarrow Finishing of tunnels + CFS services installation

.HC Point 5 - RR53 Cavern - Preparation for Second Phase Invert Concrete - 2003-01-31 - CERN ST/C

martin.gastal@cern.ch

19/07/2006

CFS services installation schedule for Detector Halls and Base Shaft Caverns

\rightarrow Based on experience with CMS

 \rightarrow Time estimates for site work only

Cavern	Dimensions L x W x H	Metallic structures	Cooling and ventilation	Electrics General Services	Crane installation
CMS	53 x 26 x 25	5w	19w	10w	1w
ILC detector halls	72 x 32 x 35	9w	36w	19w	2w
ILC Shaft base caverns	50 x 14.5 x 18	3w	10w	5w	1w

Completion examination figures

Estimates

CFS services installation schedule for Detector Halls and Base Shaft Caverns

חו	Task Name	Duration	Owner	<u> </u>								
		Duration	IOII OWIIEI		Half 1	, 2016		Ha	ulf 2, 2	2016		Half 1
				N D	JF	ΜA	ΜJ	J	A S	S 0	N D	JF
1	Underground Detectror Hall	235 days			/			-			\sim	
2	Detector Hall construction complete	0 days	TS-CE		h ^{1/4}							
3	Install metallic structures	9 wks	TS-IC	1/4		3/4						
4	Install overhead crane	2 wks	TS-IC-HM		3/7	3/1	8	-				
5	Install cooling and ventilation	36 wks	TS-CV		3/21						1	1/25
6	Install EL general services	19 wks	TS-EL		3/21				7/29)		
7	Shaft Base Caverns	70 days			/	\sim						-
8	Cavern construction complete	0 days	TS-CE		1/4							
9	Install metallic structures	3 wks	TS-IC	1/4	1/2	2						
10	Install overhead crane	1 wk	TS-IC-HM	1/2	5 61/	29		1				
11	Install cooling and ventilation	10 wks	TS-CV	2	1-1-	4	1/8					
12	Install EL general services	5 wks	TS-EL	2		3/4						

 \rightarrow CFS services ready:

→ Detector Halls: 11 months after hall construction complete

 \rightarrow Ready for detectors: end of year 5 (possible overlap with CV)

 \rightarrow Pre-commissioning done in surface building

 \rightarrow Shaft base caverns: 3 months after cavern completion

CFS services installation in detector hall

19/07/2006

- → Installation of infrastructure in all caverns
- → Installation of infrastructure in tunnels
- → Construction of Shaft access buildings
- → Construction of extension for detector building to cover shafts

19/07/2006

CMS approach

→ Detectors are assembled on the surface
→ Assembly runs in parallel with underground work
→ Allows a pre-commissioning before lowering
→ Lowering using dedicated heavy lifting equipment

19/07/2006

CMS approach

Building and CFS services installation schedule for shaft access buildings

\rightarrow Based on experience with CMS

 \rightarrow Time estimates for site work only

Building	Dimensions L x W x H	CE work Slab, shaft head	Metallic structures	Cooling and ventilation	Electrics General Services	Crane installation
CMS SDX5	36 x 17 x 15.5	15w ↑	17w	18w	12w	1w
ILC Shaft access building	30 x 12 x 12	9w	8w	8w	5w	1w

Completion examination figures

Estimates

Installation schedule for shaft access buildings

ID	Task Name	Duration	Owner	Half 1, 2016	Half 2, 2016 Ha
				DJFMAM	JJASONDJ
13	Shaft access building	200 days		\sim	\sim
14	Shaft Base Cavern construction complete	0 days	TS-CE	■ 2/1	
15	Concrete slab	9 wks	TS-CE	2/1 4/1	
16	Install shaft with infrastructure	12 wks		4/4	6/24
17	Build steelworks	8 wks	TS-CE	6/2	7 8/19
18	Install overhead crane	1 wk	TS-IC-H№		8/22 8/26
19	Install cooling and ventilation	10 wks	TS-CV		8/29 11/4
20	Install EL general services	5 wks	TS-EL		8/29 9/30

→ Bigger shaft access building complete in 10 months

→ A 12 week window is needed to install CFS infrastructure in shaft:

- \rightarrow Concrete lift modules
- → Ventilation ducts
- \rightarrow Cooling pipes
- \rightarrow Cable trays
- → Metallic staircase

→ Last shaft access building complete by middle of Year 6

19/07/2006

16 TBMs needed for RTML, ML, BDS + 2 for DRs Schedule compatible with CERN for surface buildings

Conclusions

- → Key milestones:
 - \rightarrow Detector Assembly Building ready for detector: t= t₀ + 3Y
 - \rightarrow First tunnel sections ready for services installation: t= t₀ + 4Y
 - \rightarrow DR ready for services: t= t₀ + 4Y (1 year procurement + 1 year shafts excavation + 1y10m TBM + 2m TBM extraction)
 - \rightarrow Detector Hall (cavern) ready for detector: t= t₀ + 4Y11m
 - \rightarrow All Base Shaft Caverns equipped with services: t= t₀ + 4Y11m
- → More efforts needed to reach reliable time estimates for the CFS services installation in the tunnels
- → CFS group is ready to take part in the consolidation of a general schedule including cryogenics, vacuum pipes and detectors installation which could be presented at the Valencia meeting...