

STATUS AND EXPECTED PROGRESS ON SRF CAVITIES

Réunion d'information ILC -9avril 2018

www.cea.fr

C. Z. ANTOINE

INTRODUCTION

SRF LIMITS

ULTIMATE LIMITS IN SRF-1

Niobium cavities

Performances

- $\blacksquare \mathsf{E}_{\mathsf{acc}} \, \alpha \, \mathsf{H}_{\mathsf{RF}}$
- $Q_0 (\alpha 1/R_s) \alpha T_c \Rightarrow Nb_3Sn, MgB_2, NbN...$
- Limit = magnetic transition of the SC material @ H_{peak}

Superconductivity only needed inside :

- Thickness ~ < 1 μ m => thin films
- (onto a thermally conductive, mechanically resistant material, e.g. Cu)

Today :

- Thin films exhibit too many defects
- Only Bulk Nb has high SRF performances
- Issues : getting "defect free" superconductors (yes but not all defects are detrimental...)

H field mapping in an elliptical cavity

ULTIMATE LIMITS IN SRF-2

- H_{C1} = limit Meissner/mixed state
- Nb: highest H_{c1} (180 mT)

SC phase diagram

- "Superheating field"(?) :
 - Metastable state favored by H // to surface
 - Difficult to get in real life !

- Real world cavities behavior is dominated by a few number of defects
- It is very important to measure the penetration field of samples in realistic conditions

EFFECTS OF LOCAL DEFECTS

Vortices enter more easily at lower temperature (counter intuitive !)?

- @ T~T_C: H is low => low dissipations => easy to thermally stabilize
- @ T<<T_C: H is high=> even if small defect => high dissipations => Favors flux jumps

=> We have to reduce defect density

(yes but which ones?)

BULK NIOBIUM

PRESENT STATUS

DE LA RECHERCHE À L'INDUSTRI

TYPICAL PRODUCTION SCORES FOR 9-CELLS

C.Z. Antoine Réunion d'information ILC | PAGE 8

REDUCING COST

Many trails explored...

Large grain material

Economy in Nb Weigth

Nitrogen (Oxygen ?) doping/infusion

- Today Nb is optimized for thermal conduction (stabilization), not for superconductivity
- Modification of the surface without loosing the bulk properties

Multilayer :

- Route to realistic material with higher Q_0 and E_{acc} (and even defects)
- Protection against vortex avalanche
- Getting rid of the damage layer
 - Only explored at lab level

LARGE GRAIN MATERIAL

DE LA RECHERCHE À L'INDUSTR

TYPICAL SHEET PREPARATION


```
DE LA RECHERCHE À L'INDUSTR
```

LARGE GRAIN DISK PREPARATION

DE LA RECHERCHE À L'INDUSTR

But....

Non uniform forming

- asymmetric deformation
- risk of tearing (irises)
- risk of holes during welding
- larges steps @ GB

Figure 5. Elongation tests results for 3 single crystal samples with different orientations.

Figure 7. Biaxial bulging test results on large grain Nb sample. Curve for polycrystalline.

=> a lot of forming failure=> a whole new industrial process need to be developed

[[]Singer, 2008]

- RF performances : ~ same as smaller grain cavities
 - Medium Q ~ a little better for EP cavities
- Savings for (very) large Nb sheet production (small elliptical cavities only)
 - Less fabrication steps
 - Ingot => disks : no losses of material in the corners
 - High purity material with intrinsically good crystalline quality

But not fitted for $\emptyset > 30$ cm (typical ingot \emptyset)

Increased costs and delay for Cavity forming

More fabrication steps, higher failure risks

Large cost savings on material, ...might be lost on fabrication

NITROGEN (OXYGEN ?)

DOPING/INFUSION

DE LA RECHERCHE À L'INDUSTR

BAKING/DOPING/INFUSION WHAT IS THE DIFFERENCE?

DE LA RECHERCHE À L'INDUSTRI

BAKING/DOPING/INFUSION WHAT IS THE DIFFERENCE?

Baking

- 120 °C, 48 h => oxide degrades, O_i diffuses ~100 nm
- Change in mean free path => better R_s
- prevents hydride precipitation ?

N infusion

- 800°C annealing (oxide disappears)
- 120 °C, 48 h in presence of N₂ => N_i diffuses ~10 nm
- Change in mean free path => better R_S
- prevents hydride precipitation ?

Variability lab to lab

- Same recipe, but not same results,
- Needs adaptation : high temperature treatment ≠

Higher sensitivity to trap flux

- Upon cooldown if ∃ defects, magnetic remnant flux gets trapped
- very high surf resistance in RF !

Martinello et al, FNAL

Gonella et al, CORNELL U.

Related to crystalline sub-structure, not

specified/monitored yet

MULTILAYERS

DE LA RECHERCHE À L'INDUSTRIE

AFTER NIOBIUM : NANOCOMPOSITES MULTILAYERS

Structures proposed by A. Gurevich in 2006, SRF tailored

Dielectric layer

- **—** Small \perp vortex (short -> low dissipation)
- Quickly coalesce (w. RF)
- Blocks avalanche penetration
- => Multilayer concept for RF application

Nanometric I/S/I/ layers deposited on Nb

- SC nanometric layers (≤ 100 nm) => H_{C1}↑ => Vortex enter at higher field
- Nb surface screening => allows high magnetic field inside the cavity => higher E_{acc}
- SC w. high T_C than Nb (e.g. NbN): $R_{s}^{NbN} \approx \frac{1}{10} R_{s}^{Nb}$ => $Q_{0}^{\text{multi}} >> Q_{0}^{\text{Nb}}$

- Real world cavities behavior is dominated by a few number of defects
- It is very important to measure the penetration field of samples in realistic conditions

DE LA RECHERCHE À L'INDUSTR

EXPERIMENTAL DETAILS

of Vx trapped there (and length).

Nb – INSULATOR – NbN MODEL

NbN coating by Magnetron Sputtering

NbN single layers series

- NbN SL / "thick" Nb layer
 - Magnetron sputtered
 - MgO as dielectric layer
- Far from perfect...

Nb (nm)	MgO (nm) Calc(actual)	NbN (nm) Calc(actual)	T _c (K)
250 [†]	14	0	8.9
250 [†]	14	25	15.5
500	10 (10.3)	50 (65)	15*
500	10 (8.4)	75 (72)	14.1*
500	10 (9.8)	100 (94)	14*
500	10	125	14.3*
500	10 (6.7)	150 (132)	15.9*
500	10 (10.4)	200 (164)	15*

† Not same batch, deposited on the same conditions, but substrate = sapphire

*As determined with magnetometry, see below.

FAR FROM PERFECT....

C.Z. Antoine Réunion d'information ILC | PAGE 26

COMPARAISON WITH THEORY

200

Ideal Nb substrate with B_{C1} =170 mT

Nb with defects^{*}, with B_{C1} =50 mT

* e.g. morphologic defects that allow earlier vortex penetration See SST paper cited earlier

The enhancement of the field penetration increases with thickness of NbN

150

102

I layer thickness $d_{\mathcal{I}}$ (nm)

It reaches a saturation at thicknesses > 100 nm

COMPARAISON WITH THEORY

DE LA RECHERCHE À L'INDUSTR

ROLE OF THE DIELECTRIC LAYER !

Field lines

First transition

- Thin SC layer NbN
 Insulator MgO
 Thick SC layer Nb
- H // surface => surface
 barrier[†]
- A defect locally weakens the surface barrier
- 1st transition, vortex
 blocked by the insulator
 ~100 nm => low dissipation.
- 2nd transition, propagation
 - of vortex avalanches (~100 μ m) => high dissipation.
- Dielectric layer = efficient protection !!!

*B. Bean and J. D. Livingston, Phys. Rev. Lett. 12, 14 (2964) toine Réunion d'information ILC | PAGE 30

H_{C1} (E_{ACC}^{MAX}) AND R_{s} (Q_{0}^{MAX}) ESTIMATION

sample 100mm

DAMMAGE LAYER

DAMAGE LAYER / ROLLING

High dislocation density (damage) incriminated in:

- Apparition of hot spots on operating cavities
- High density of hydride precipitates
- High sensitivity to trapped flux

Damage layer seems to essentially originate from rolling

- Surface texture resistant to recrystallization
- Not fully eliminated after 150µm removal (patchy nature)

Finite element simulation of 2% reduction of 3.5 mm sheet with 1 cm diameter rolls (Courtesy Non-Linear Engineering, L.L.C.).

[R. Crook et al, Black Laboratory] & <u>http://accelconf.web.cern.ch/AccelConf/srf2009/p</u> osters/tupp0071_poster.pdf

Postulate :

Strain left by forming and welding can be easily removed by recrystallization treatment

=> mechanical polishing of flat sheet easy and inexpensive !!!

DE LA RECHERCHE À L'INDUSTRI

DAMAGE AS SEEN BY ELECTRON DIFFRACTION

Surface of the sheet

New damage layer < 1µm

Polishing on flat surface is quick and easy. Mechanical chemical preparation inspired from metallographic polishing can produce damage layer *≤*100 nm

Production already asserted to produce specification

Reducing cost R&D :

- Today limited to only 2 directions : large grain and N infusion
- Already promising
- Physics not fully understood => risks

Longer term R&D

- Promising trails for improvement also exist
- better control of the material production is required

THANK YOU FOR YOUR ATTENTION

What do we measure ?

C.Z. Antoine Réunion d'information ILC 37