The ILD detector: Design optimization and TPC R&D

Paul Colas

The ILD concept

- Based on Particle Flow: reconstruct the event by matching calorimeter objects with charged tracks (use the most precise E-p determination, avoid double count between tracks and E objects
- Continuous tracking (TPC) and highly segmented calorimeters
- Optimize jet energy resolution .vs. B, R_{TPC}, ECAL cell size : 3.5T, 1.7 m or 1.4 m, 1cm or less (MIP subtraction)

Vertex detector for b and c hadron reconstruction (jet charge) : 4 μm resolution

The ILD Group

Currently 68 groups signed up

25

ILD activities matrix

Overall Detector megation

physics Analysis Inon-Higgs SMM

Physics Analysis (BSM)

Data Acquisition

Observer

Physics Analysis (Hillies)

The ILD Organization

- Born from the fusion of GLD (mainly Asian) and LCD (mainly EU)
- LOI in March 2009, 'Detector Baseline Document' in 2013
- One spoke (Ties Behnke, elected in 2015)
- One deputy spoke (Kiyotomo Kawagoe, nominated in 2016)
- An Institute Assembly (68 members, one per institute)
- An Executive Team
- A Technical Board, chaired by the Technical Coordinator (Claude Vallée nominated in 2016)
- A Physics Group (Physics Coordinator Keisuke Fujii)
- A Software Group (Software Coordinator Frank Gaede)

The ILD Technical Organization

• Ensure that evolving subdetectors electronics complies with ILC specifications.

ILD tracking

Tracker sub-systems

Beam pipe

Vertex Detector (VXD)

Silicon Intermediate Tracker (SIT)

Time Projection Chamber (TPC)

Silicon Envelope Tracker (SET)

ILD tracking

Tracker sub-systems

Beam pipe

Vertex Detector (VXD, $\theta > 15^{\circ}$)

Forward Tracking Disks (FTD)

Time Projection Chamber (TPC, $\theta > 12^{\circ}$)

TPC Readout Technologies

MPGDs suffer less from ExB effects than MWPCs. They require less heavy mechanics. Panels with each technology have been made and tested.

Micromegas

Mesh on top of a charge-dispersing resistive anode

European GEMs

Standard kapton triple GEM with ceramic spacers

GridPix

Integrated grid on 55 μ digital pixels

TPC R&D: The LCTPC collaboration and the DESY test setup

All the TPC R&D is gathered. *www.lctpc.org*

The collaboration shares a test facility (Field cage, magnet, endplate, cosmic-ray trigger, ancillaries)

Allows testing/comparing several technologies/ideas with cost-awareness

Beam and cosmic-ray tests

with 3 GEM modules

Φ~1 500 mm

with 7 MM modules

Beam test in DESY magnet

Cosmic-ray test at Saclay

Charge spreading by resistive foil

Resistive coating on top of an insulator: Continuous RC network which spreads the charge: improves position sensitivity

M. Dixit, A. Rankin, NIM A 566 (2006) 28

Various resistive coatings have been tried: Carbon-loaded Kapton (CLK), Diamond-like Carbon (DLC) and resistive ink (3-5 M Ω /sq)

In addition the resistive foil suppresses sparks.

Charge spreading by resistive foil

$$ho(\mathrm{r,t}) = rac{\mathrm{RC}}{2\mathrm{t}} \exp[-rac{-\mathrm{r}^2\mathrm{RC}}{4\mathrm{t}}]$$

resistivity

Gaussian spreading as a function of time with $\sigma_r = sqrt(2t/RC)$

R- surface resistivity C- capacitance/unit area t~shaping~few 100 ns RC = 180 R(M Ω) /(d/175 μ) ns/mm²

For R= 2 Mohm/sq, shaping 200 ns, 200 μ insulation in addition to the 50 μ m _mesh _ kapton, one obtains sigma = 1.3 mm

(For 0.2 Mohm/sq, we would have sigma= 3.16 mm)

Pad response

Relative fraction of 'charge' seen by the pad, vs x(pad)-x(track)

24 rows x 72 columns of 3 x 6.8 mm² pads

Z=20cm, 200 ns shaping

ENCAPSULATED RESISTIVE ANODE DESIGN

Spreading :

Results on resolution

All pad TPC technologies give similar results (but with 3mm pads for MM and 1.2mm pads for GEMs)

Results on resolution

All pad TPC technologies give similar results (but with 3mm pads for MM and 1.2mm pads for GEMs)

dE/dx resolution of a resistive-anode TPC

- Apply multi FEM selection
- Vary α to reach the best resolution
- T2K value is $0.7 \rightarrow$ still make sense
- Use 20+19+21=60 clusters, 42.5 cm
- Approximating to T2K vertical 72 clusters 80 cm

- 8.95 ± 0.09 %

- $6.48 \pm 0.07\%$

OK for T2K2 OK for ILD TPC : 5.0%

TPC design and integration :electronics integration

TPC design and integration : mechanical integration

Resuming : Zhihong Sun *et al.*

TPC design and integration : 2-phase CO₂ cooling

Advantages: Specific heat 4 x water Latent heat for evaporation : 80 x water Boiling point at room temperature at 60 bar Inexplosive, non-conductive, vapors instantly at 1 atm.

Tested in our test beam in 2014 and 2015

Cables, services, power consumption,...

All details are written in a TPC Interface Control Document.

Serious issues from push-pull operation.

Ion back-flow, Gating

IBF naturally suppressed in Micromegas. However a gating might be necessary, under study.

One possibility demonstrated: large opening GEM, could be integrated to the modules.

Conclusions

The ILD collaboration is coming to life

Proof-of-principle of a Micromegas TPC done (GEMs have similar performances, the difference will be in complexity/reliability)

Getting ready for the technology choice (S. Ganjour, K. Fujii et al., TYL)

Solutions for integration demonstrated, but still lots of studies in progress to make the detector a reality

ILD members from Irfu: ATTIE David; BERRIAUD Christophe; Besancon Marc; COLAS Paul; FOURCHES Nicolas; GANJOUR Serguei; Giomataris Ioannis; NAPOLY Olivier; SHARYY Viatcheslav; TITOV Maksym; Tuchming Boris;