
Detector Utility

2019/2/28 Yasuhiro Sugimoto @ILC Infra/CFS mini-workshop

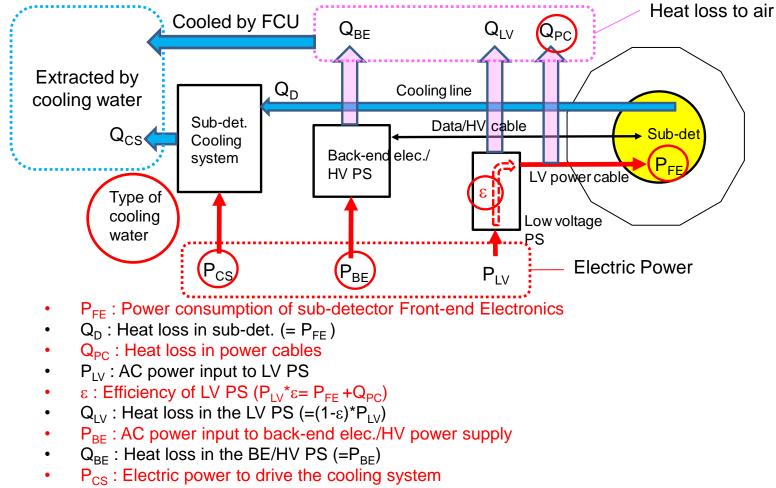
CFS Schedule

CFS timeline on "Pre- and Preparation Phase"

CFS Schedule

- If a positive statement by Japanese government is made, ILC basic design linked to CFS has to be fixed by 2019 summer
- CFS Engineering Documents will be made in ~1 year based on this basic design
- Based on the CFS Engineering Documents, CFS detailed design will be made by civil engineering companies in ~3 years
- So, detector groups should clarify the requirements for the experimental hall and the utilities by 2019 summer
- Particularly, design of underground facility is urgent

Necessary utilities for detectors


- Electricity
- Heating, ventilation, air conditioning (HVAC)
- Cooling water
- Cryogenics for s.c. magnets
- Chamber gas
- (Network for data transfer)
- Assembly hall (with gantry crane)
- Sub-detector assembly building
- etc.

Utility Survey

- Requirements for utilities for sub-detectors of ILD were surveyed in 2018
 - Electric power
 - Cooling water
 - Space
- Two rounds of the survey were made, but only 5 sub-detector groups responded
 - Vertex detector
 - TPC
 - ECAL
 - SDHCAL
 - AHCAL
- Requirements for other sub-detectors will be supplemented by Y.S. to estimate total necessary electric power and cooling water
 - Power consumption by sub-detectors is relatively small compared to magnet power
 - So, rough estimate on the sub-detector power consumption would be OK

Utility Survey

• 6 items for electricity/cooling water

• Q_{CS} : Heat to be extracted from cooling system (= Q_D + P_{CS})

ELECTRICITY

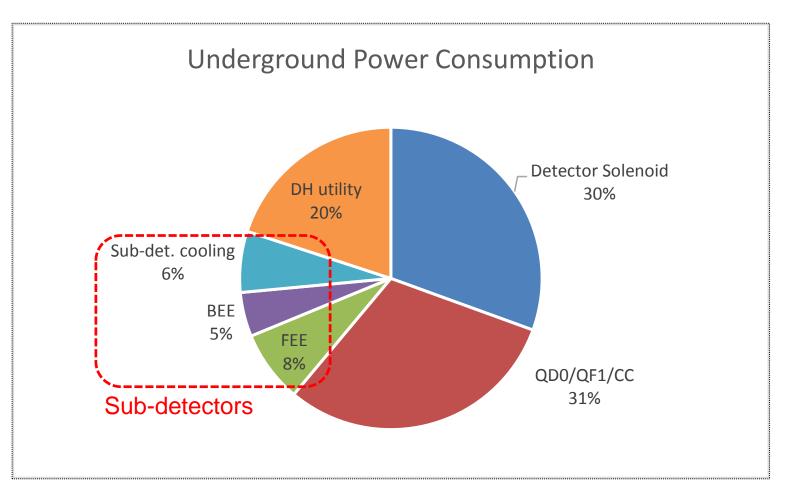
Basic concept

- On surface: $275(154)kV \rightarrow (66kV) \rightarrow 6.6kV$
- 6.6kV AC is sent to underground USC through Utility Shaft
- In USC: 6.6kV → 400(3φ) / 200(3φ,1φ) / 100V(1φ)
- Power dissipation is eventually extracted by cooling water (→ cooling tower on surface)

Tentative estimation for ILD

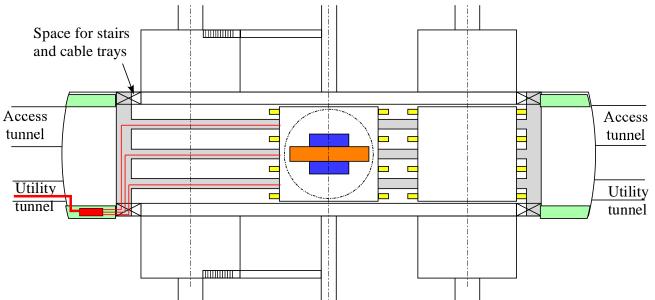
Item		Power (kW)						
	Power supply	150						
QD0/QF1/Crab cavity	Cold box	150						
	He Compressor	300	(Surface)					
	Power supply	250						
Detector Solenoid	Cold box	50						
	He Compressor	500	(Surface)					
	Total	161	FEE	BEE	Cooling			
	Muon	12	5	5	2			
	HCAL	45.5	27.5	8	10			
	ECAL	40	20	12	8			
Sub-detector	VFC	9	2	5	2			
Sub-delector	SET	9	2	5	2			
	TPC	16.2	15	NA	1.2			
	SIT	8	1	5	2			
	FTD	8	1	5	2			
	VTX	13.5	2	10				
Computer farm	1000	(Surface)						
Water pump		25	(11kWx2+3.7kW)					
HVAC		600	(Surface, CMS)					
Lighting	25							
Air compressor	50	(Surface)						
Platform mover	100							
Crane for ILD	5t x 3	21						
	40t	50						
Total		3432						
Underground	982							

Sub-detectors:


Y.S.'s guess (based on TDR description, if exists) except for HCAL, ECAL, TPC, and VTX

Not listed:

- Infrastructure in assembly halls
- Computers for rec/ana/sim.
- Office building
- Cooling tower and chiller on surface

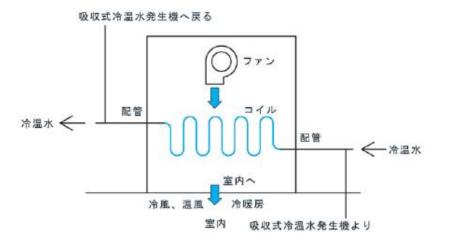

Underground Power Consumption

Total underground power ~ 1MW

DC Power Supply

- ~80kW is necessary for front-end electronics
- Distance between cubicle (AC transformer) to the platform is long (~80m)
- AC line between cubicle and the platform should be flexible enough for push-pull operation
- In order to minimize power loss in the flexible AC cables, $400V-3\phi$ AC input is preferable for high-power DC power supplies on the platform
- A possible configuration
 - Cubicle (USC) →[Thick cables] → Power distribution panel (Service gallery 2F)
 →[Flexible cables] → DC PS (Platform)

Comparison with other study


	CMS	CLIC	SiD	ILD
Detector Solenoid	900	900	294*	800
QD0/QF1/CC	NA	NA	NA	600
FEE	600	<10	12	75
BEE	650	<10	70	47
PC farm	800	1000	NA	1000
DH utility	NA	NA	105*	246
Cooling	850	750	NA	65
HVAC	600	600	NA	600
Sum	4400	3250	481	3432

- He compressor is not included in SiD Detector Solenoid
- Cranes and lighting are not included in SiD DH utility
- CMS and CLIC data is taken from LCD-Note-2013-011

COOLING WATER

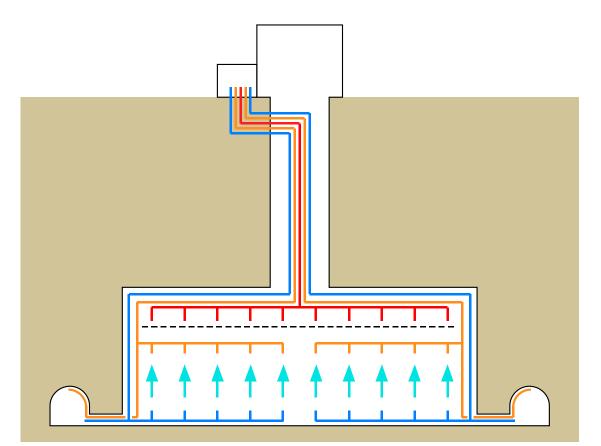
Basic concept

- Two types of water are supplied from surface
 - Normal temp. water: T~30 °C, ∆T~10 °C
 - Chilled water: T~10 °C, Δ T~5 °C (TBD)
 - High pressure due to Δh ~100m can be isolated by heat exchangers in USC
- Sub-detectors are cooled by sub-detector cooling systems
 - Coolant could be CO2, water, air, or something else
 - Sub-detector cooling systems are cooled by cooling water
- Electronics racks are cooled by fan-coil units
 - Cool air flow generated by chilled water removes heat, and returns to room temperature

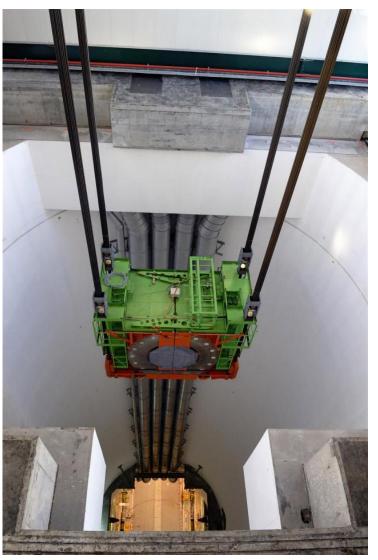
14

Schematic Cooling Cooling Surface Tower Tower Chiller ~15°C ~10°C ~40°C 30°C Underground Chilled water Normal temp. water Fan-coil units Sub-det. Cooling \triangleright \geq (electronics racks) systems Sub-det. Cooling systems Low-conductivity water ▶ ρ>1MΩcm Magnet power supply

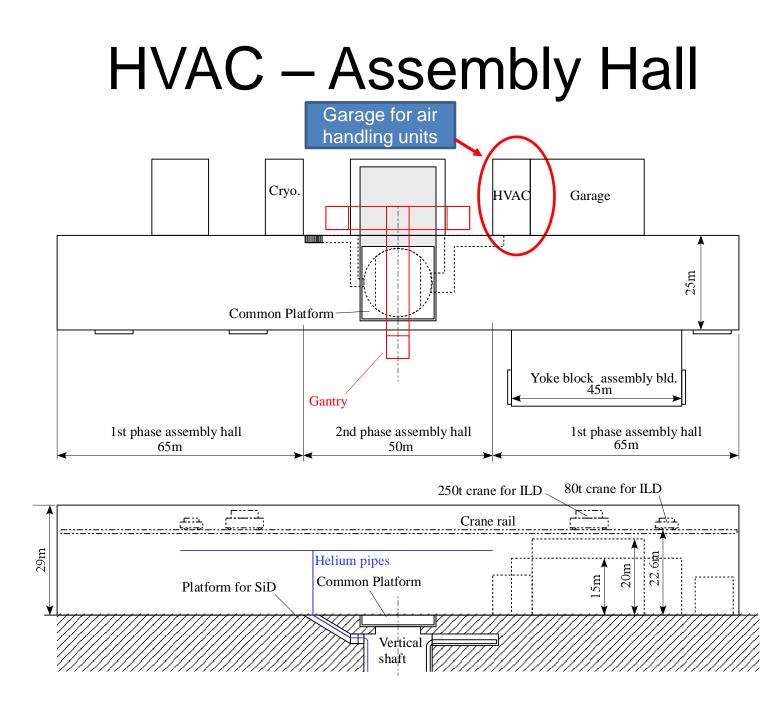
Requirement


Cooling water for underground facilities

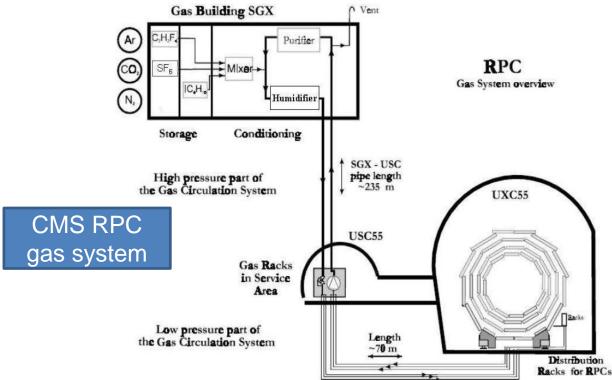
		Chilled Water			Low-conductive Water			Normal Water			
Item		Heat (kW)	dT	Flow (L/min)	Heat (kW)	dT	Flow (L/m)	Heat (kW)	aı	Flow (L/m)	
QD0/QF1/CC	Power supply				150	10	214				
	Cold box				150	10	214				
Detector	Power supply				250	10	357				
Solenoid	Cold box				50	10	71				
Sub-detector	Muon	12	5	34							
	HCAL	45.5	5	130							
	ECAL	40	5	114							
	VFC	9	5	26							
	SET	9	5	26							
	TPC	3	5	9				13	5	38	NW for precision chiller
	SIT	8	5	23							
	FTD	8	5	23							
	VTX	13.5	5	39							
Pump		11	5	31	11	10	16	3.7	5	11	
Cubicle (AC transformer)		49	5	140							95% efficiency, FCU
Total		208		595	611		873	17		48	
Primary Loop		Chilled Water			Normal Temperature Water						
	595				5 921						


HVAC

HVAC


- Air handling units on surface (next to assembly hall)
- Air ducts through main shaft
- Necessary capacity has not been studied yet

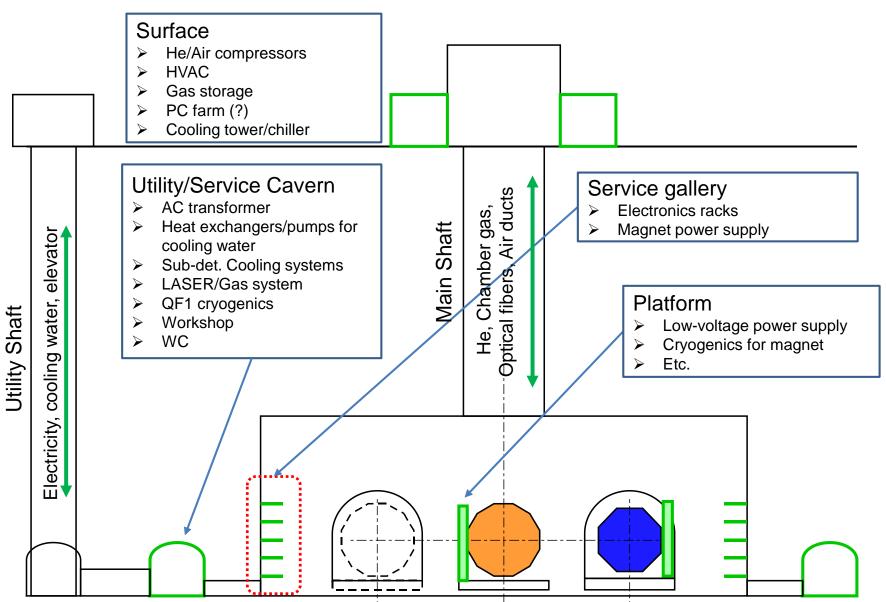
HVAC - CMS



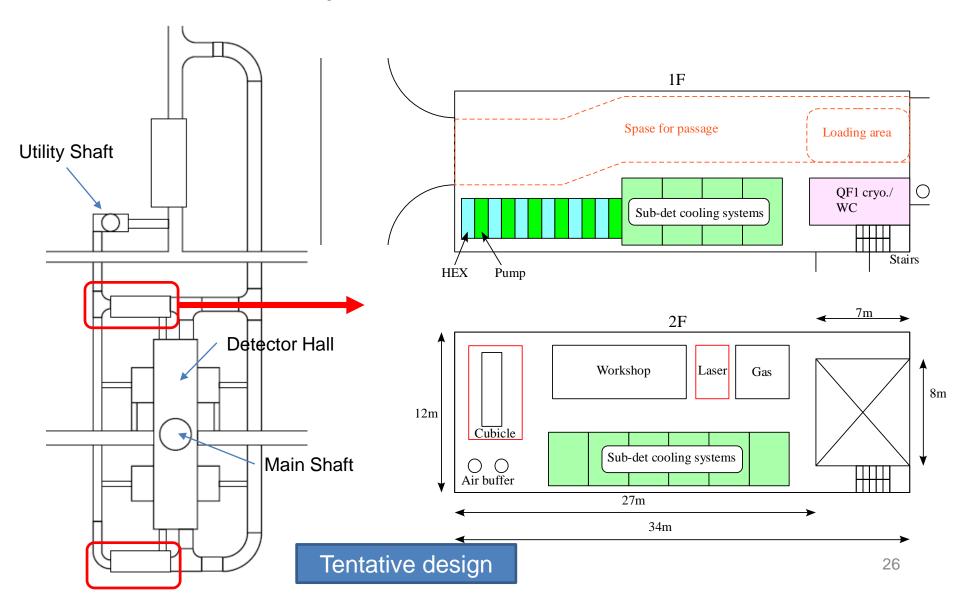
OTHER SERVICES

Chamber gas

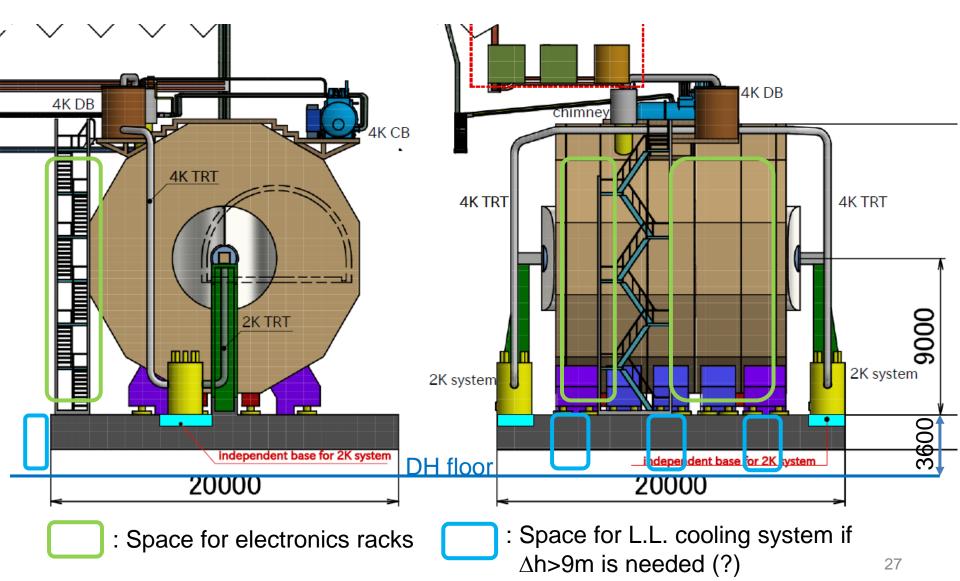
- Chamber gas is necessary for TPC and SDHCAL
- Gas storage on surface: 8x4m² for each
- Gas system underground
 - TPC: Some space on the platform
 - SDHCAL: 4x4m² space in USC and small space on service gallery and platform

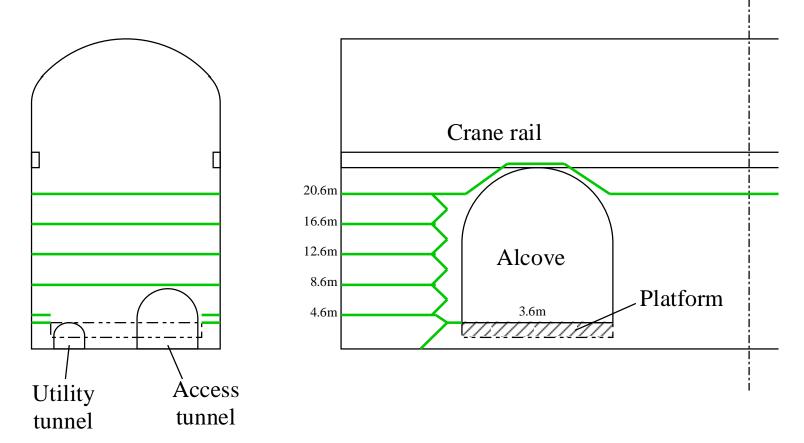


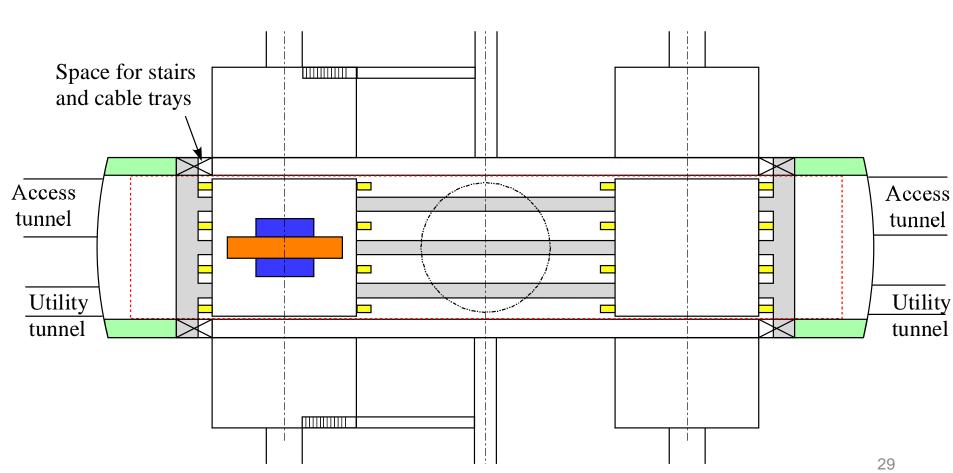
LASER system

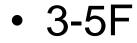

- Laser system will be used for tracker alignment
- Laser light source requires isolated space for safety reason

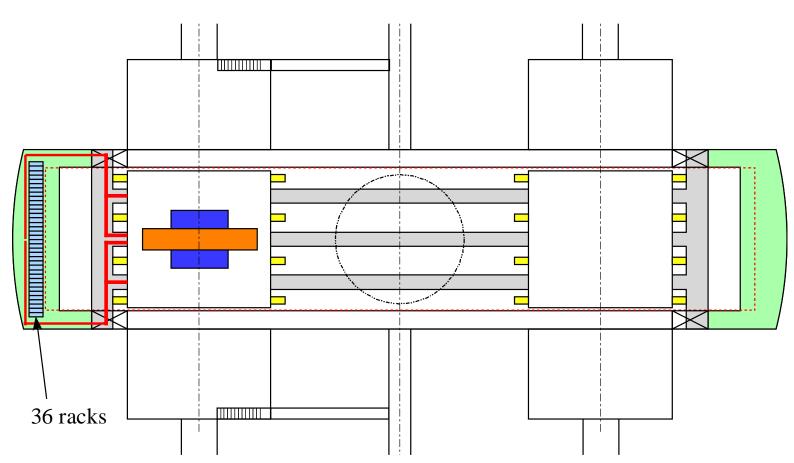
SPACE

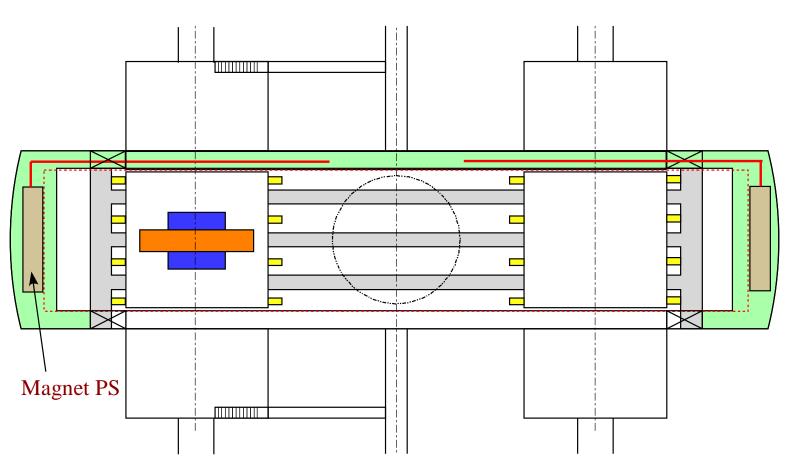

Location of Utility/Service


Utility/service cavern


Detector Platform

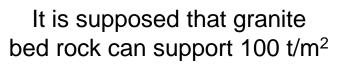


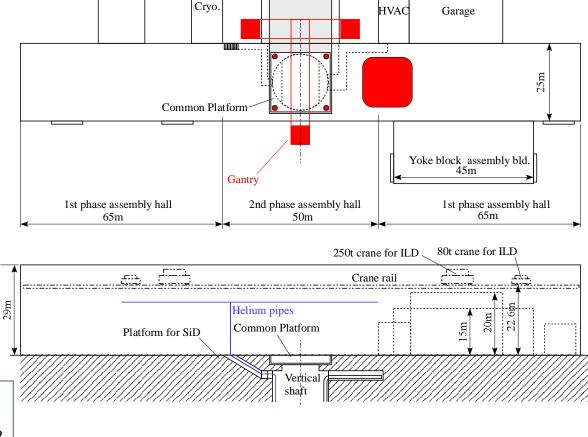

- 2F : Power distribution panel
- 3F-5F : Electronics racks
- 6F : Magnet power supply



Space requirements

- People tends to like space on the platform, where
 - few 100 G leakage field could exists
 - vibration is restricted (pump, fan, etc.)
 - access is limited during experiment
 - Safety: radiation, leakage B field
 - Vibration: human access could cause vibration
- Because space on the platform is limited, there could be severe competition between sub-detectors


l														/
Sub-detector name			VTX	SIT	FTD	TPC	SET	ECAL	SD HCAL	A HCAL	MUON	Lumi CAL	BeamCAL	LH CAL
Number of 40 inch Platfo	Platform		2 (?)	0	0	1	<u>כ</u> כ	3	6	12		ې ر	<u>у с</u>	, 0
Number of 19-inch electronics racks	Service gallery		3	0	0	6	0 C	0	2	1	ŗ	j ç	, Q	, 0
electronics racks	Utility/Service Cavern (USC)		0	0	0	· · · · · · · · · · · · · · · · · · ·	4 0	0	0	0	, <u>(</u>	<u>s</u> c) 0	0
Sub-detector	Floor in USC		Don't mind	Don't mind	Don't mind	Don't mine	d Don't mind	1st floor	1st floor	0	Don't mind	d Don't mind	Don't mind	Don't mind
cooling system	WxDxH	m^3	6x1x2	0	0	12x(0.8x0.	.7 0) 4x3x2	2 4x4x2	0	, ç	j Ç	, ç	, 0
	Space on surface (WxD)	m^2	0	0	0	8x4	4 C	0) 8x4	0	ſ	ې ر	<u>у с</u>	, 0
Cas system	Space in USC (WxD)	m^2	0	0	0	1	J C	0) 4x4	0	ſ	j ç) (0
Gas system	Space on service gallery (WxD)	m^2	0	0	0	1	J C	0) 1x1	0	, ç	s ç	, Ç	, 0
· · · · · · · · · · · · · · · · · · ·	Space on platform (WxD)	m^2	0	0	0	2x2	2 0) 0) 2x1	0	, ç	5 ¢) (0
Laser system	Space in USC (WxD)	m^2	0	0	0	1x0.6	C	0 0	0	0	, Ç	ر ک) (0
													-	


Requirements from sub-detectors still have inconsistency / incompleteness

ASSEMBLY/PRE-ASSEMBLY HALL

Floor and foundation

- Floor and foundation of AH should be load resistant
 - Columns of GC:
 - ~2000 t / column
 - Platform support:
 - ~6000 t total
 - ~1500 t / support
 - VS works as a pile?
 - Assembly hall floor:
 - ~500 t/m² (air-pad)
 - ~15000 t / 16x16m2

Pre-assembly hall

- In addition to the main assembly hall on surface, we need pre-assembly hall for sub-detector assembly
- Requirements from sub-detector groups were collected/estimated since 2015

Sub-detector	Area (m²)	Building
Iron yoke blocks	900 (=20x45)	Yoke assembly building attached to Main AH
SDHCAL/AHCAL	1400/330	
ECAL	830	
Muon detector	400	Independent Pre-Assembly Hall at IR
TPC	100	 Total 3100/2030 m² FCAL should use HCAL/ECAL space after
SET	100	HCAL/ECAL installation
Si detectors	100	
Utility	170	

SUMMARY

Summary

- ILD requirements for utilities have been surveyed to some extent
- For the moment, it seems power consumption of sub-detectors are relatively small compared to magnet power
- Service gallery and Utility/Service cavern which we propose seem to have enough space for ILD
- Assembly hall has to be carefully designed to make its floor and foundation load resistant
- There are still many items of requirements for detector utilities to be clarified to fix the CFS design in interaction region