Solenoid construction plan

27.Oct.2019 Y. Makida

Coil Dimensions and Solenoid Field

	TDR & HITACHI	TOSHIBA
Coil Inner Radius (mm)	3615	3215
Coil Outer Radius (mm)	3970	3570
Length (mm) Each Block Length (mm)	7350 2450	7350 2450
Turn × Layer	309×4 300×4 (for gap b/w module)	330 × 5
Nominal Current (A)	22400 23072 (in case 300 turn)	15339
Current Density (A/mm ²)	10.6	9.7
Central Field (T)	4.0	4.0
Maximum Field (T)	4.6	4.5
Support Shell Thickness (mm)	50 (Checked by ANSYS)	10 – 100 (now analyzing)

Outline of ILD magnet manufacturing process

Depot for Assembly

Depot facility

- Depots for Solenoid assembled units and parts.
- Send each units and parts to the assembly hall conveniently.
- Smaller assembly hall..

@ assembly hall

2. assembly and completion of the solenoid (\sim 225 t)

- rotate inner vacuum vessel into horizontal position => weld radial tiers and end flange

Solenoid Manufacture Time Line

R&D subjects before TDR

- ① Conductor Design
 - Manufacturable dimension
 - AL stabilizer material
- 2 Technological components
 - Internal multilayer winding
 - Aluminum pipe welding
 - Conductor joint

Assembly off-site (in Factories)

- 1 3 solenoid coil units (**C**old **M**ass)
- 2 4 anti-DID coils (Cold Mass)
- ③ Several Radiation Shield units
- 4 Several Vacuum Vessel units Assembly on-site

Assembly on-site

- Completion CM, inner & outer RS and inner & outer VV
- 2 Composition CM, RS , VV and Yoke

BUCK UP

ILD requirement for AH by Sugimoto 2016

• Space

- ILD needs assembly space for 5 yoke rings and solenoid
- If we assume 25mx10m space for each of YE± and YB±, and 25x20m for YB0 and solenoid, respectively, 25mx80m space is necessary
- Crane
 - A 250 ton crane for yoke assembly and an 80 ton crane for solenoid/detector assembly and installation are needed
 - ~4000 ton gantry crane for detector lowering
- Hall height
 - 22.6m from the floor to crane rail, 6m from crane rail to ceiling, Ξ plus alpha for lights and fans on the ceiling
- Cryogenics
 - He gas pipes have to be connected from the compressor building for magnetic field mapping in AH
- Platform
 - ILD should have its own platform on surface to avoid the risk of delay of SiD construction

